Misplaced Pages

5-demicubic honeycomb

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Type of uniform space-filling tessellation
Demipenteractic honeycomb
(No image)
Type Uniform 5-honeycomb
Family Alternated hypercubic honeycomb
Schläfli symbols h{4,3,3,3,4}
h{4,3,3,3}
ht0,5{4,3,3,3,4}
h{4,3,3,4}h{∞}
h{4,3,3}h{∞}
ht0,4{4,3,3,4}h{∞}
h{4,3,4}h{∞}h{∞}
h{4,3}h{∞}h{∞}
Coxeter diagrams

=
=









Facets {3,3,3,4}
h{4,3,3,3}
Vertex figure t1{3,3,3,4}
Coxeter group B ~ 5 {\displaystyle {\tilde {B}}_{5}}
D ~ 5 {\displaystyle {\tilde {D}}_{5}}

The 5-demicube honeycomb (or demipenteractic honeycomb) is a uniform space-filling tessellation (or honeycomb) in Euclidean 5-space. It is constructed as an alternation of the regular 5-cube honeycomb.

It is the first tessellation in the demihypercube honeycomb family which, with all the next ones, is not regular, being composed of two different types of uniform facets. The 5-cubes become alternated into 5-demicubes h{4,3,3,3} and the alternated vertices create 5-orthoplex {3,3,3,4} facets.

D5 lattice

The vertex arrangement of the 5-demicubic honeycomb is the D5 lattice which is the densest known sphere packing in 5 dimensions. The 40 vertices of the rectified 5-orthoplex vertex figure of the 5-demicubic honeycomb reflect the kissing number 40 of this lattice.

The D
5 packing (also called D
5) can be constructed by the union of two D5 lattices. The analogous packings form lattices only in even dimensions. The kissing number is 2=16 (2 for n<8, 240 for n=8, and 2n(n-1) for n>8).

The D
5 lattice (also called D
5 and C
5) can be constructed by the union of all four 5-demicubic lattices: It is also the 5-dimensional body centered cubic, the union of two 5-cube honeycombs in dual positions.

= .

The kissing number of the D
5 lattice is 10 (2n for n≥5) and its Voronoi tessellation is a tritruncated 5-cubic honeycomb, , containing all bitruncated 5-orthoplex, Voronoi cells.

Symmetry constructions

There are three uniform construction symmetries of this tessellation. Each symmetry can be represented by arrangements of different colors on the 32 5-demicube facets around each vertex.

Coxeter group Schläfli symbol Coxeter-Dynkin diagram Vertex figure
Symmetry
Facets/verf
B ~ 5 {\displaystyle {\tilde {B}}_{5}} =
=
h{4,3,3,3,4} =
32: 5-demicube
10: 5-orthoplex
D ~ 5 {\displaystyle {\tilde {D}}_{5}} =
=
h{4,3,3,3} =
16+16: 5-demicube
10: 5-orthoplex
2×½ C ~ 5 {\displaystyle {\tilde {C}}_{5}} = ] ht0,5{4,3,3,3,4} 16+8+8: 5-demicube
10: 5-orthoplex

Related honeycombs

This honeycomb is one of 20 uniform honeycombs constructed by the D ~ 5 {\displaystyle {\tilde {D}}_{5}} Coxeter group, all but 3 repeated in other families by extended symmetry, seen in the graph symmetry of rings in the Coxeter–Dynkin diagrams. The 20 permutations are listed with its highest extended symmetry relation:

D5 honeycombs
Extended
symmetry
Extended
diagram
Extended
group
Honeycombs
D ~ 5 {\displaystyle {\tilde {D}}_{5}}
<>

D ~ 5 {\displaystyle {\tilde {D}}_{5}} ×21 = B ~ 5 {\displaystyle {\tilde {B}}_{5}} , , ,

, , ,

] D ~ 5 {\displaystyle {\tilde {D}}_{5}} ×22 ,
<2>

D ~ 5 {\displaystyle {\tilde {D}}_{5}} ×41 = C ~ 5 {\displaystyle {\tilde {C}}_{5}} , , , , ,
>]
↔ ]

D ~ 5 {\displaystyle {\tilde {D}}_{5}} ×8 = C ~ 5 {\displaystyle {\tilde {C}}_{5}} ×2 , ,

See also

Regular and uniform honeycombs in 5-space:

References

  1. "The Lattice D5".
  2. Sphere packings, lattices, and groups, by John Horton Conway, Neil James Alexander Sloane, Eiichi Bannai
  3. Conway (1998), p. 119
  4. "The Lattice D5".
  5. Conway (1998), p. 120
  6. Conway (1998), p. 466

External links

Fundamental convex regular and uniform honeycombs in dimensions 2–9
Space Family A ~ n 1 {\displaystyle {\tilde {A}}_{n-1}} C ~ n 1 {\displaystyle {\tilde {C}}_{n-1}} B ~ n 1 {\displaystyle {\tilde {B}}_{n-1}} D ~ n 1 {\displaystyle {\tilde {D}}_{n-1}} G ~ 2 {\displaystyle {\tilde {G}}_{2}} / F ~ 4 {\displaystyle {\tilde {F}}_{4}} / E ~ n 1 {\displaystyle {\tilde {E}}_{n-1}}
E Uniform tiling 0 δ3 3 3 Hexagonal
E Uniform convex honeycomb 0 δ4 4 4
E Uniform 4-honeycomb 0 δ5 5 5 24-cell honeycomb
E Uniform 5-honeycomb 0 δ6 6 6
E Uniform 6-honeycomb 0 δ7 7 7 222
E Uniform 7-honeycomb 0 δ8 8 8 133331
E Uniform 8-honeycomb 0 δ9 9 9 152251521
E Uniform 9-honeycomb 0 δ10 10 10
E Uniform 10-honeycomb 0 δ11 11 11
E Uniform (n-1)-honeycomb 0 δn n n 1k22k1k21
Categories:
5-demicubic honeycomb Add topic