Misplaced Pages

Allen–Cahn equation

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Equation in mathematical physics
A numerical solution to the one dimensional Allen-Cahn equation

The Allen–Cahn equation (after John W. Cahn and Sam Allen) is a reaction–diffusion equation of mathematical physics which describes the process of phase separation in multi-component alloy systems, including order-disorder transitions.

The equation describes the time evolution of a scalar-valued state variable η {\displaystyle \eta } on a domain Ω {\displaystyle \Omega } during a time interval T {\displaystyle {\mathcal {T}}} , and is given by:

η t = M η [ div ( ε η 2 η ) f ( η ) ] on  Ω × T , η = η ¯ on  η Ω × T , {\displaystyle {{\partial \eta } \over {\partial t}}=M_{\eta }\quad {\text{on }}\Omega \times {\mathcal {T}},\quad \eta ={\bar {\eta }}\quad {\text{on }}\partial _{\eta }\Omega \times {\mathcal {T}},}
( ε η 2 η ) m = q on  q Ω × T , η = η o on  Ω × { 0 } , {\displaystyle \quad -(\varepsilon _{\eta }^{2}\nabla \,\eta )\cdot m=q\quad {\text{on }}\partial _{q}\Omega \times {\mathcal {T}},\quad \eta =\eta _{o}\quad {\text{on }}\Omega \times \{0\},}

where M η {\displaystyle M_{\eta }} is the mobility, f {\displaystyle f} is a double-well potential, η ¯ {\displaystyle {\bar {\eta }}} is the control on the state variable at the portion of the boundary η Ω {\displaystyle \partial _{\eta }\Omega } , q {\displaystyle q} is the source control at q Ω {\displaystyle \partial _{q}\Omega } , η o {\displaystyle \eta _{o}} is the initial condition, and m {\displaystyle m} is the outward normal to Ω {\displaystyle \partial \Omega } .

It is the L gradient flow of the Ginzburg–Landau free energy functional. It is closely related to the Cahn–Hilliard equation.

Mathematical description

Let

  • Ω R n {\displaystyle \Omega \subset \mathbb {R} ^{n}} be an open set,
  • v 0 ( x ) L 2 ( Ω ) {\displaystyle v_{0}(x)\in L^{2}(\Omega )} an arbitrary initial function,
  • ε > 0 {\displaystyle \varepsilon >0} and T > 0 {\displaystyle T>0} two constants.

A function v ( x , t ) : Ω × [ 0 , T ] R {\displaystyle v(x,t):\Omega \times \to \mathbb {R} } is a solution to the Allen–Cahn equation if it solves

t v Δ x v = 1 ε 2 f ( v ) , Ω × [ 0 , T ] {\displaystyle \partial _{t}v-\Delta _{x}v=-{\frac {1}{\varepsilon ^{2}}}f(v),\quad \Omega \times }

where

  • Δ x {\displaystyle \Delta _{x}} is the Laplacian with respect to the space x {\displaystyle x} ,
  • f ( v ) = F ( v ) {\displaystyle f(v)=F'(v)} is the derivative of a non-negative F C 1 ( R ) {\displaystyle F\in C^{1}(\mathbb {R} )} with two minima F ( ± 1 ) = 0 {\displaystyle F(\pm 1)=0} .

Usually, one has the following initial condition with the Neumann boundary condition

{ v ( x , 0 ) = v 0 ( x ) , Ω × { 0 } n v = 0 , Ω × [ 0 , T ] {\displaystyle {\begin{cases}v(x,0)=v_{0}(x),&\Omega \times \{0\}\\\partial _{n}v=0,&\partial \Omega \times \\\end{cases}}}

where n v {\displaystyle \partial _{n}v} is the outer normal derivative.

For F ( v ) {\displaystyle F(v)} one popular candidate is

F ( v ) = ( v 2 1 ) 2 4 , f ( v ) = v 3 v . {\displaystyle F(v)={\frac {(v^{2}-1)^{2}}{4}},\qquad f(v)=v^{3}-v.}

References

  1. Allen, S. M.; Cahn, J. W. (1972). "Ground State Structures in Ordered Binary Alloys with Second Neighbor Interactions". Acta Metall. 20 (3): 423–433. doi:10.1016/0001-6160(72)90037-5.
  2. Allen, S. M.; Cahn, J. W. (1973). "A Correction to the Ground State of FCC Binary Ordered Alloys with First and Second Neighbor Pairwise Interactions". Scripta Metallurgica. 7 (12): 1261–1264. doi:10.1016/0036-9748(73)90073-2.
  3. Veerman, Frits (March 8, 2016). "What is the L gradient flow?". MathOverflow.
  4. Bartels, Sören (2015). Numerical Methods for Nonlinear Partial Differential Equations. Deutschland: Springer International Publishing. p. 153.

Further reading

  • http://www.ctcms.nist.gov/~wcraig/variational/node10.html
  • Allen, S. M.; Cahn, J. W. (1975). "Coherent and Incoherent Equilibria in Iron-Rich Iron-Aluminum Alloys". Acta Metall. 23 (9): 1017. doi:10.1016/0001-6160(75)90106-6.
  • Allen, S. M.; Cahn, J. W. (1976). "On Tricritical Points Resulting from the Intersection of Lines of Higher-Order Transitions with Spinodals". Scripta Metallurgica. 10 (5): 451–454. doi:10.1016/0036-9748(76)90171-x.
  • Allen, S. M.; Cahn, J. W. (1976). "Mechanisms of Phase Transformation Within the Miscibility Gap of Fe-Rich Fe-Al Alloys". Acta Metall. 24 (5): 425–437. doi:10.1016/0001-6160(76)90063-8.
  • Cahn, J. W.; Allen, S. M. (1977). "A Microscopic Theory of Domain Wall Motion and Its Experimental Verification in Fe-Al Alloy Domain Growth Kinetics". Journal de Physique. 38: C7–51.
  • Allen, S. M.; Cahn, J. W. (1979). "A Microscopic Theory for Antiphase Boundary Motion and Its Application to Antiphase Domain Coarsening". Acta Metall. 27 (6): 1085–1095. doi:10.1016/0001-6160(79)90196-2.
  • Bronsard, L.; Reitich, F. (1993). "On three-phase boundary motion and the singular limit of a vector valued Ginzburg–Landau equation". Arch. Rat. Mech. Anal. 124 (4): 355–379. Bibcode:1993ArRMA.124..355B. doi:10.1007/bf00375607. S2CID 123291032.

External links

  • Simulation by Nils Berglund of a solution of the Allen–Cahn equation


Stub icon

This condensed matter physics-related article is a stub. You can help Misplaced Pages by expanding it.

Categories:
Allen–Cahn equation Add topic