Misplaced Pages

Anyonic Lie algebra

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Graded vector space equipped with a bilinear operator

In mathematics, an anyonic Lie algebra is a U(1) graded vector space L {\displaystyle L} over C {\displaystyle \mathbb {C} } equipped with a bilinear operator [ , ] : L × L L {\displaystyle \colon L\times L\rightarrow L} and linear maps ε : L C {\displaystyle \varepsilon \colon L\to \mathbb {C} } (some authors use | | : L C {\displaystyle |\cdot |\colon L\to \mathbb {C} } ) and Δ : L L L {\displaystyle \Delta \colon L\to L\otimes L} such that Δ X = X i X i {\displaystyle \Delta X=X_{i}\otimes X^{i}} , satisfying following axioms:

  • ε ( [ X , Y ] ) = ε ( X ) ε ( Y ) {\displaystyle \varepsilon ()=\varepsilon (X)\varepsilon (Y)}
  • [ X , Y ] i [ X , Y ] i = [ X i , Y j ] [ X i , Y j ] e 2 π i n ε ( X i ) ε ( Y j ) {\displaystyle _{i}\otimes ^{i}=\otimes e^{{\frac {2\pi i}{n}}\varepsilon (X^{i})\varepsilon (Y_{j})}}
  • X i [ X i , Y ] = X i [ X i , Y ] e 2 π i n ε ( X i ) ( 2 ε ( Y ) + ε ( X i ) ) {\displaystyle X_{i}\otimes =X^{i}\otimes e^{{\frac {2\pi i}{n}}\varepsilon (X_{i})(2\varepsilon (Y)+\varepsilon (X^{i}))}}
  • [ X , [ Y , Z ] ] = [ [ X i , Y ] , [ X i , Z ] ] e 2 π i n ε ( Y ) ε ( X i ) {\displaystyle ]=,]e^{{\frac {2\pi i}{n}}\varepsilon (Y)\varepsilon (X^{i})}}

for pure graded elements X, Y, and Z.

References

  1. Majid, S. (21 Aug 1997). "Anyonic Lie Algebras". Czechoslov. J. Phys. 47 (12): 1241–1250. arXiv:q-alg/9708022. Bibcode:1997CzJPh..47.1241M. doi:10.1023/A:1022877616496.
Stub icon

This linear algebra-related article is a stub. You can help Misplaced Pages by expanding it.

Categories:
Anyonic Lie algebra Add topic