Graded vector space equipped with a bilinear operator
In mathematics , an anyonic Lie algebra is a U (1) graded vector space
L
{\displaystyle L}
over
C
{\displaystyle \mathbb {C} }
equipped with a bilinear operator
[
⋅
,
⋅
]
:
L
×
L
→
L
{\displaystyle \colon L\times L\rightarrow L}
and linear maps
ε
:
L
→
C
{\displaystyle \varepsilon \colon L\to \mathbb {C} }
(some authors use
|
⋅
|
:
L
→
C
{\displaystyle |\cdot |\colon L\to \mathbb {C} }
) and
Δ
:
L
→
L
⊗
L
{\displaystyle \Delta \colon L\to L\otimes L}
such that
Δ
X
=
X
i
⊗
X
i
{\displaystyle \Delta X=X_{i}\otimes X^{i}}
, satisfying following axioms:
ε
(
[
X
,
Y
]
)
=
ε
(
X
)
ε
(
Y
)
{\displaystyle \varepsilon ()=\varepsilon (X)\varepsilon (Y)}
[
X
,
Y
]
i
⊗
[
X
,
Y
]
i
=
[
X
i
,
Y
j
]
⊗
[
X
i
,
Y
j
]
e
2
π
i
n
ε
(
X
i
)
ε
(
Y
j
)
{\displaystyle _{i}\otimes ^{i}=\otimes e^{{\frac {2\pi i}{n}}\varepsilon (X^{i})\varepsilon (Y_{j})}}
X
i
⊗
[
X
i
,
Y
]
=
X
i
⊗
[
X
i
,
Y
]
e
2
π
i
n
ε
(
X
i
)
(
2
ε
(
Y
)
+
ε
(
X
i
)
)
{\displaystyle X_{i}\otimes =X^{i}\otimes e^{{\frac {2\pi i}{n}}\varepsilon (X_{i})(2\varepsilon (Y)+\varepsilon (X^{i}))}}
[
X
,
[
Y
,
Z
]
]
=
[
[
X
i
,
Y
]
,
[
X
i
,
Z
]
]
e
2
π
i
n
ε
(
Y
)
ε
(
X
i
)
{\displaystyle ]=,]e^{{\frac {2\pi i}{n}}\varepsilon (Y)\varepsilon (X^{i})}}
for pure graded elements X , Y , and Z .
References
Majid, S. (21 Aug 1997). "Anyonic Lie Algebras". Czechoslov. J. Phys . 47 (12): 1241–1250. arXiv :q-alg/9708022 . Bibcode :1997CzJPh..47.1241M . doi :10.1023/A:1022877616496 .
Categories :
Anyonic Lie algebra
Add topic
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑