Misplaced Pages

Aschbacher block

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Finite group in mathematics

In finite group theory, a branch of mathematics, a block, sometimes called Aschbacher block, is a subgroup giving an obstruction to Thompson factorization and pushing up. Blocks were introduced by Michael Aschbacher.

Definition

A group L is called short if it has the following properties (Aschbacher & Smith 2004, definition C.1.7):

  1. L has no subgroup of index 2
  2. The generalized Fitting subgroup F*(L) is a 2-group O2(L)
  3. The subgroup U = is an elementary abelian 2-group in the center of O2(L)
  4. L/O2(L) is quasisimple or of order 3
  5. L acts irreducibly on U/CU(L)

An example of a short group is the semidirect product of a quasisimple group with an irreducible module over the 2-element field F2

A block of a group G is a short subnormal subgroup.

References

Category:
Aschbacher block Add topic