Misplaced Pages

Traffic collision

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Auto accidents) Incident when a vehicle collides with another object "Car crash" and "Fender Bender" redirect here. For other uses, see Car crash (disambiguation). For the film, see Fender Bender (film). For the Roseanne episode, see Fender Bender (Roseanne).

A traffic collision in Japan, 2007
The aftermath of an accident involving a jackknifing truck, Mozambique, Africa

A traffic collision, also known as a motor vehicle collision, or car crash, occurs when a vehicle collides with another vehicle, pedestrian, animal, road debris, or other moving or stationary obstruction, such as a tree, pole or building. Traffic collisions often result in injury, disability, death, and property damage as well as financial costs to both society and the individuals involved. Road transport is statistically the most dangerous situation people deal with on a daily basis, but casualty figures from such incidents attract less media attention than other, less frequent types of tragedy. The commonly used term car accident is increasingly falling out of favor with many government departments and organizations, with the Associated Press style guide recommending caution before using the term and the National Union of Journalists advising against it in their Road Collision Reporting Guidelines. Some collisions are intentional vehicle-ramming attacks, staged crashes, vehicular homicide or vehicular suicide.

Several factors contribute to the risk of collisions, including vehicle design, speed of operation, road design, weather, road environment, driving skills, impairment due to alcohol or drugs, and behavior, notably aggressive driving, distracted driving, speeding and street racing.

A collision in Brussels between a Renault Kangoo and a tram

In 2013, 54 million people worldwide sustained injuries from traffic collisions. This resulted in 1.4 million deaths in 2013, up from 1.1 million deaths in 1990. About 68,000 of these occurred with children less than five years old. Almost all high-income countries have decreasing death rates, while the majority of low-income countries have increasing death rates due to traffic collisions. Middle-income countries have the highest rate with 20 deaths per 100,000 inhabitants, accounting for 80% of all road fatalities with 52% of all vehicles. While the death rate in Africa is the highest (24.1 per 100,000 inhabitants), the lowest rate is to be found in Europe (10.3 per 100,000 inhabitants).

Terminology

See also: Road collision types
A Honda Accord after it collided with another vehicle

Traffic collisions can be classified by general types. Types of collision include head-on, road departure, rear-end, side collisions, and rollovers.

Many different terms are commonly used to describe vehicle collisions. The World Health Organization uses the term road traffic injury, while the U.S. Census Bureau uses the term motor vehicle accidents (MVA), and Transport Canada uses the term "motor vehicle traffic collision" (MVTC). Other common terms include auto accident, car accident, car crash, car smash, car wreck, motor vehicle collision (MVC), personal injury collision (PIC), road accident, road traffic accident (RTA), road traffic collision (RTC), and road traffic incident (RTI) as well as more unofficial terms including smash-up, pile-up, and fender bender

Criticism of "accident" terminology

Many organizations, companies and government agencies have begun to avoid the term accident, instead preferring terms such as collision, crash or incident. This is because the term accident may imply that there is no one to blame or that the collision was unavoidable, whereas most traffic collisions are the result of driving under the influence, excessive speed, distractions such as mobile phones, other risky behavior, poor road design, or other preventable factors.

In 1997, George L. Reagle, the Associate Administrator for Motor Carriers of the Federal Motor Carrier Safety Administration wrote a letter stating that "A crash is not an accident", emphasizing that the Department's Research and Special Programs Administration, the Federal Highway Administration, and the National Highway Traffic Safety Administration had all declared that "accident" should be avoided in their published writings and media communications. In 2016, the Associated Press updated its style guide to recommend that journalists use "crash, collision, or other terms" rather than "accident" unless culpability is proven. The AP also recommends avoiding "accident" when negligence is proven or claimed because the term "can be read as exonerating the person responsible." In 2021, the American Automobile Association (AAA) passed a resolution to replace "car accident" with "car crash" in their vocabulary. In 2022, the traffic management company INRIX announced that "accident" would be removed from their lexicon. In 2023, the National Union of Journalists in the UK published the Road Collision Reporting Guidelines which includes a recommendation that journalists should "Avoid use of the word ‘accident’ until the facts of a collision are known."

The Maryland Department of Transportation's Highway Safety Office emphasizes that "crashes are no accident", saying that "Using the word accident suggests that an incident was unavoidable, but many roadway crashes can be attributed to human error." The Michigan Department of Transportation states that "accident" should be dropped in favor of "crash", saying that "Traffic crashes are fixable problems, caused by inattentive drivers and driver behavior. They are not accidents." In line with their Vision Zero commitments, the Portland Bureau of Transportation recommends using "crash" rather than "accident".

On the contrary, some have criticized the use of terminology other than accident for holding back safety improvements, based on the idea that such terms perpetuate a culture of blame that may discourage the involved parties from fully disclosing the facts, and thus frustrate attempts to address the real root causes.

Intent

Some traffic collisions are caused intentionally by a driver. For example, a collision may be caused by a driver who intends to commit vehicular suicide. Collisions may also be intentionally caused by people who hope to make an insurance claim against the other driver or may be staged for such purposes as insurance fraud. Motor vehicles may also be involved in collisions as part of a deliberate effort to hurt other people, such as in a vehicle-ramming attack or vehicular homicide.

Health effects

Physical

A man with visible facial scars resulting from a car collision

A number of physical injuries can commonly result from the blunt force trauma caused by a collision, ranging from bruising and contusions to catastrophic physical injury (e.g., paralysis), traumatic or non-traumatic cardiac arrest and death. The CDC estimates that roughly 100 people die in motor vehicle crashes each day in the United States.

Psychological

Following collisions, long-lasting psychological trauma may occur. These issues may make those who have been in a crash afraid to drive again. In some cases, psychological trauma may affect individuals' lives, causing difficulty going to work, attending school, or performing family responsibilities.

Causes

Road incidents are caused by a large number of human factors such as failing to act according to weather conditions, road design, signage, speed limits, lighting conditions, pavement markings, and roadway obstacles. A 1985 study by K. Rumar, using British and American crash reports as data, suggested 57% of crashes were due solely to driver factors, 27% to the combined roadway and driver factors, 6% to the combined vehicle and driver factors, 3% solely to roadway factors, 3% to combined roadway, driver, and vehicle factors, 2% solely to vehicle factors, and 1% to combined roadway and vehicle factors. Reducing the severity of injury in crashes is more important than reducing incidence and ranking incidence by broad categories of causes is misleading regarding severe injury reduction. Vehicle and road modifications are generally more effective than behavioral change efforts with the exception of certain laws such as required use of seat belts, motorcycle helmets, and graduated licensing of teenagers.

Human factors

Human factors in vehicle collisions include anything related to drivers and other road users that may contribute to a collision. Examples include driver behavior, visual and auditory acuity, decision-making ability, and reaction speed.

A 1985 report based on British and American crash data found driver error, intoxication, and other human factors contribute wholly or partly to about 93% of crashes. A 2019 report from the U.S. National Highway Traffic Safety Administration found that leading contributing factors for fatal crashes included driving too fast for conditions or in excess of the speed limit, operating under the influence, failure to yield right of way, failure to keep within the proper lane, operating a vehicle in a careless manner, and distracted driving.

Drivers distracted by mobile devices had nearly four times greater risk of crashing their cars than those who were not. Research from the Virginia Tech Transportation Institute has found that drivers who are texting while driving are 23 times more likely to be involved in a crash as non-texting drivers. Dialing a phone is the most dangerous distraction, increasing a drivers' chance of crashing by 12 times, followed by reading or writing, which increased the risk by ten times.

An RAC survey of British drivers found 78% of drivers thought they were highly skilled at driving, and most thought they were better than other drivers, a result suggesting overconfidence in their abilities. Nearly all drivers who had been in a crash did not believe themselves to be at fault. One survey of drivers reported that they thought the key elements of good driving were:

  • controlling a car including a good awareness of the car's size and capabilities
  • reading and reacting to road conditions, weather, road signs, and the environment
  • alertness, reading and anticipating the behavior of other drivers.

Although proficiency in these skills is taught and tested as part of the driving exam, a "good" driver can still be at a high risk of crashing because:

the feeling of being confident in more and more challenging situations is experienced as evidence of driving ability, and that 'proven' ability reinforces the feelings of confidence. Confidence feeds itself and grows unchecked until something happens – a near-miss or an accident.

An Axa survey concluded Irish drivers are very safety-conscious relative to other European drivers. This does not translate to significantly lower crash rates in Ireland.

Accompanying changes to road designs have been wide-scale adoptions of rules of the road alongside law enforcement policies that included drink-driving laws, setting of speed limits, and speed enforcement systems such as speed cameras. Some countries' driving tests have been expanded to test a new driver's behavior during emergencies, and their hazard perception.

There are demographic differences in crash rates. For example, although young people tend to have good reaction times, disproportionately more young male drivers feature in collisions, with researchers observing that many exhibit behaviors and attitudes to risk that can place them in more hazardous situations than other road users. This is reflected by actuaries when they set insurance rates for different age groups, partly based on their age, sex, and choice of vehicle. Older drivers with slower reactions might be expected to be involved in more collisions, but this has not been the case as they tend to drive less and, apparently, more cautiously. Attempts to impose traffic policies can be complicated by local circumstances and driver behavior. In 1969 Leeming warned that there is a balance to be struck when "improving" the safety of a road.

Conversely, a location that does not look dangerous may have a high crash frequency. This is, in part, because if drivers perceive a location as hazardous, they take more care. Collisions may be more likely to happen when hazardous road or traffic conditions are not obvious at a glance, or where the conditions are too complicated for the limited human machine to perceive and react in the time and distance available. High incidence of crashes is not indicative of high injury risk. Crashes are common in areas of high vehicle congestion, but fatal crashes occur disproportionately on rural roads at night when traffic is relatively light.

This phenomenon has been observed in risk compensation research, where the predicted reductions in collision rates have not occurred after legislative or technical changes. One study observed that the introduction of improved brakes resulted in more aggressive driving, and another argued that compulsory seat belt laws have not been accompanied by a clearly attributed fall in overall fatalities. Most claims of risk compensation offsetting the effects of vehicle regulation and belt use laws have been discredited by research using more refined data.

In the 1990s, Hans Monderman's studies of driver behavior led him to the realization that signs and regulations had an adverse effect on a driver's ability to interact safely with other road users. Monderman developed shared space principles, rooted in the principles of the woonerven of the 1970s. He concluded that the removal of highway clutter, while allowing drivers and other road users to mingle with equal priority, could help drivers recognize environmental clues. They relied on their cognitive skills alone, reducing traffic speeds radically and resulting in lower levels of road casualties and lower levels of congestion.

Some crashes are intended; staged crashes, for example, involve at least one party who hopes to crash a vehicle in order to submit lucrative claims to an insurance company. In the United States during the 1990s, criminals recruited Latin American immigrants to deliberately crash cars, usually by cutting in front of another car and slamming on the brakes. It was an illegal and risky job, and they were typically paid only $100. Jose Luis Lopez Perez, a staged crash driver, died after one such maneuver, leading to an investigation that uncovered the increasing frequency of this type of crash.

Motor vehicle speed

A crash on Ring I in Helsinki, Finland, on August 25, 2006, at around 13:00 local time. The incident caused traffic congestion.

The U.S. Department of Transportation's Federal Highway Administration reviewed research on traffic speed in 1998. The summary says that:

  • The evidence shows the risk of having a crash is increased both for vehicles traveling slower than the average speed and for those traveling above the average speed.
  • The risk of being injured increases exponentially with speeds much faster than the median speed.
  • The severity/lethality of a crash depends on the vehicle speed change at impact.
  • There is limited evidence suggesting lower speed limits result in lower speeds on a system-wide basis.
  • Most crashes related to speed involve speed too fast for the conditions.
  • More research is needed to determine the effectiveness of traffic calming.

In the U.S. in 2018, 9,378 people were killed in motor vehicle crashes involving at least one speeding driver, which accounted for 26% of all traffic-related deaths for the year.

In Michigan in 2019, excessive speed was a factor in 18.8% of the fatalities that resulted from fatal motor vehicle crashes and in 15.6% of the suspected serious injuries resulting from crashes.

The Road and Traffic Authority (RTA) of the Australian state of New South Wales (NSW) asserts speeding (traveling too fast for the prevailing conditions or above the posted speed limit) is a factor in about 40 percent of road deaths. The RTA also says speeding increases the risk of a crash and its severity. On another web page, the RTA qualifies its claims by referring to one specific piece of research from 1997, and writes "Research has shown that the risk of a crash causing death or injury increases rapidly, even with small increases above an appropriately set speed limit."

The contributory factor report in the official British road casualty statistics shows for 2006, that "exceeding the speed limit" was a contributory factor in 5% of all casualty crashes (14% of all fatal crashes), and "traveling too fast for conditions" was a contributory factor in 11% of all casualty crashes (18% of all fatal crashes).

In France, in 2018, the speed limit was reduced from 90 km/h to 80 km/h on a large part of the local outside built-up area road network in the sole aim of reducing the number of road fatalities.

Assured clear distance ahead

Main article: Assured clear distance ahead

A common cause of collisions is driving faster than one can stop within their field of vision. Such practice is illegal and is particularly responsible for an increase in fatalities at night – when it occurs most.

Driver impairment

Further information: Driving under the influence
A graph showing exponential growth in collisions with increasing alcohol consumption
Relative risk of collisions based on blood alcohol levels
A graph outlining the relationship between the number of hours driven and the percentage of commercial truck crashes related to driver fatigue

Driver impairment describes factors that prevent the driver from driving at their normal level of skill. Common impairments include:

Alcohol
According to the Government of Canada, coroner reports from 2008 suggested almost 40% of fatally injured drivers consumed some quantity of alcohol before the collision.
Physical impairment
Poor eyesight and/or physical impairment, with many jurisdictions setting simple sight tests and/or requiring appropriate vehicle modifications before being allowed to drive.
Youth
Insurance statistics demonstrate a notably higher incidence of collisions and fatalities among drivers aged in their teens or early twenties, with insurance rates reflecting this data. These drivers have the highest incidence of both collisions and fatalities among all driver age groups, a fact that was observed well before the advent of mobile phones.

Females in this age group exhibit somewhat lower collision and fatality rates than males but still register well above the median for drivers of all ages. Also within this group, the highest collision incidence rate occurs within the first year of licensed driving. For this reason, many US states have enacted a zero-tolerance policy wherein receiving a moving violation within the first six months to one year of obtaining a license results in automatic license suspension. South Dakota is the only state that allows fourteen-year-olds to obtain drivers' licenses.

Old age
Old age, with some jurisdictions requiring driver retesting for reaction speed and eyesight after a certain age.
Sleep deprivation

Various factors such as fatigue or sleep deprivation might increase the risk, or the number of hours of driving might increase the risk of an incident. 41% of drivers self-report having fallen asleep at the wheel. It is estimated that 15% of fatal crashes involve drowsiness (10% of daytime crashes, and 24% of nighttime crashes). Work factors can increase the risk of drowsy driving such as long or irregular hours or driving at night.

Drug use
Including some prescription drugs, over-the-counter drugs (notably antihistamines, opioids and muscarinic antagonists), and illegal drugs.
Distraction
Research suggests that the driver's attention is affected by distracting sounds such as conversations and operating a mobile phone while driving. Many jurisdictions now restrict or outlaw the use of some types of phones in the car. Recent research conducted by British scientists suggests that music can also have an effect; classical music is considered to be calming, yet too much could relax the driver to a condition of distraction. On the other hand, hard rock may encourage the driver to step on the acceleration pedal, thus creating a potentially dangerous situation on the road.

Cell phone use is an increasingly significant problem on the roads and the U.S. National Safety Council compiled more than 30 studies postulating that hands-free is not a safer option because the brain remains distracted by the conversation and cannot focus solely on the task of driving.

Combinations

Several conditions can combine to create a more dangerous situation, for example, low doses of alcohol and cannabis have a more severe effect on driving performance than either in isolation. Taking recommended doses of several drugs together, which individually do not cause impairment, may cause drowsiness. This could be more pronounced in an elderly person whose renal function is less efficient than a younger person's.

Road design

Main articles: Highway engineering and Road safety
A potential long fall stopped by an early guardrail, c. 1920. Guardrails, median barriers, or other physical objects can help reduce the consequences of a collision, or minimize damage.

A 1985 US study showed that about 34% of serious crashes had contributing factors related to the roadway or its environment. Most of these crashes also involved a human factor. The road or environmental factor was either noted as making a significant contribution to the circumstances of the crash or did not allow room to recover. In these circumstances, it is frequently the driver who is blamed rather than the road; those reporting the collisions have a tendency to overlook the human factors involved, such as the subtleties of design and maintenance that a driver could fail to observe or inadequately compensate for.

Research has shown that careful design and maintenance, with well-designed intersections, road surfaces, visibility and traffic control devices, can result in significant improvements in collision rates.

Electric scooter crash in New York City

Individual roads also have widely differing performance in the event of an impact. In Europe, there are now EuroRAP tests that indicate how "self-explaining" and forgiving a particular road and its roadside would be in the event of a major incident.

In the UK, research has shown that investment in a safe road infrastructure program could yield a 1⁄3 reduction in road deaths, saving as much as £6 billion per year. A consortium of 13 major road safety stakeholders has formed the Campaign for Safe Road Design, which is calling on the UK Government to make safe road design a national transport priority.

Vehicle design and maintenance

Main article: Automobile safety
A 2005 Chevrolet Malibu involved in a rollover crash
Seat belts

Research has shown that, across all collision types, it is less likely that seat belts were worn in collisions involving death or serious injury, rather than light injury; wearing a seat belt reduces the risk of death by about 45 percent. Seat belt use is controversial, with notable critics such as Professor John Adams suggesting that their use may lead to a net increase in road casualties due to a phenomenon known as risk compensation. Observation of driver behaviors before and after seat belt laws does not support the risk compensation hypothesis.

Several driving behaviors were observed on the road before and after the belt use law was enforced in Newfoundland, and in Nova Scotia during the same period without a law. Belt use increased from 16 percent to 77 percent in Newfoundland and remained virtually unchanged in Nova Scotia. Four driver behaviors (speed, stopping at intersections when the control light was amber, turning left in front of oncoming traffic, and gaps in following distance) were measured at various sites before and after the law. Changes in these behaviors in Newfoundland were similar to those in Nova Scotia, except that drivers in Newfoundland drove slower on expressways after the law, contrary to the risk compensation theory.

Maintenance

A well-designed and well-maintained vehicle, with good brakes, tires and well-adjusted suspension will be more controllable in an emergency and thus be better equipped to avoid collisions. Some mandatory vehicle inspection schemes include tests for some aspects of roadworthiness, such as the UK's MOT test or German TÜV conformance inspection.

The design of vehicles has also evolved to improve protection after collision, both for vehicle occupants and for those outside of the vehicle. Much of this work was led by automotive industry competition and technological innovation, leading to measures such as Saab's safety cage and reinforced roof pillars of 1946, Ford's 1956 Lifeguard safety package, and Saab and Volvo's introduction of standard fit seatbelts in 1959. Other initiatives were accelerated as a reaction to consumer pressure, after publications such as Ralph Nader's 1965 book Unsafe at Any Speed accused motor manufacturers of indifference to safety.

In the early 1970s, British Leyland started an intensive program of vehicle safety research, producing a number of prototype experimental safety vehicles demonstrating various innovations for occupant and pedestrian protection such as airbags, anti-lock brakes, impact-absorbing side-panels, front and rear head restraints, run-flat tires, smooth and deformable front-ends, impact-absorbing bumpers, and retractable headlamps. The design has also been influenced by government legislation, such as the Euro NCAP impact test.

Common features designed to improve safety include thicker pillars, safety glass, interiors with no sharp edges, stronger bodies, other active or passive safety features, and smooth exteriors to reduce the consequences of an impact on pedestrians.

The UK Department for Transport publish road casualty statistics for each type of collision and vehicle through its Road Casualties Great Britain report. These statistics show a ten-to-one ratio of in-vehicle fatalities between types of cars. In most cars, occupants have a 2–8% chance of death in a two-car collision.

Center of gravity

Some crash types tend to have more serious consequences. Rollovers have become more common in recent years, perhaps due to the increased popularity of taller SUVs, people carriers, and minivans, which have a higher center of gravity than standard passenger cars. Rollovers can be fatal, especially if the occupants are ejected because they were not wearing seat belts (83% of ejections during rollovers were fatal when the driver did not wear a seat belt, compared to 25% when they did). After a first-generation Mercedes-Benz A-Class notoriously failed a 'moose test' (sudden swerving to avoid an obstacle) in 1997, some manufacturers enhanced suspension using stability control linked to an anti-lock braking system to reduce the likelihood of rollover. After retrofitting these systems to its models in 1999–2000, Mercedes saw its models involved in fewer crashes.

Now, about 40% of new US vehicles, mainly the SUVs, vans and pickup trucks that are more susceptible to rollover, are being produced with a lower center of gravity and enhanced suspension with stability control linked to its anti-lock braking system to reduce the risk of rollover and meet US federal requirements that mandate anti-rollover technology by September 2011.

Motorcycles

Motorcyclists and pillion-riders have little protection other than their clothing and helmets. This difference is reflected in the casualty statistics, where they are more than twice as likely to suffer severely after a collision. In 2005, there were 198,735 road crashes with 271,017 reported casualties on roads in Great Britain. This included 3,201 deaths (1.1%) and 28,954 serious injuries (10.7%) overall. Of these casualties 178,302 (66%) were car users and 24,824 (9%) were motorcyclists, of whom 569 were killed (2.3%) and 5,939 seriously injured (24%).

Sociological factors

Studies in United States have shown that poor people have a greater risk of dying in a car crash than people who are well-off. Car deaths are also higher in poorer states.

Similar studies in France or Israel have shown the same results. This may be due to working-class people having less access to secure equipment in cars, having older cars which are less protected against crash, and needing to cover more distance to go to work each day.

COVID-19 lockdown impact

While the advent of the COVID lockdown meant a decrease in road traffic in the United States, the rates of incidents, speeding, and traffic fatalities rose in 2020 and 2021 (rate as measured against vehicle miles traveled). The traffic fatality rate jumped to 1.25 per 100 million vehicle miles traveled, up from 1.06 during the same period in 2019. Reasons cited for the increases are greater speeds, not wearing seatbelts, and driving while impaired.

In their preliminary report covering the first six months of 2021, the US nonprofit public safety advocacy group, the National Safety Council (NSC) estimated of total motor-vehicle deaths for the first six months of 2021 were 21,450, up 16% from 2020 and up 17% from 18,384 in 2019. The estimated mileage death rate in 2021 was 1.43 deaths per 100 million vehicle miles traveled, up 3% from 1.39 in 2020 and up 24% from 1.15 in 2019.

Preliminary data also show that even as traffic levels returned to normal after the onset of COVID in March–April 2020, drivers continued to drive at excessive speeds. A 2020 study conducted by INRIX, private company that analyzes traffic patters, behaviors and congestion, showed that as traffic levels returned to normal during the three-month period August to October 2020, growth in collisions (57%), outpaced the growth in miles traveled (22%) resulting in a higher than normal collision rate during this period.

In France, the Ministry of Interior reported that traffic incidents, crash-related injuries, and fatalities dropped in 2020 compared with 2019. Fatalities dropped 21.4%, injuries dropped 20.9%, and incidents overall dropped 20%. It also reported that the number of vehicles on the road dropped by 75%, which suggests the rate (incidents per vehicle-mile) increased.

Other

Other possibly hazardous factors that may alter a driver's soundness on the road include:

  • Irritability
  • Following specifically distinct rules too bureaucratically, inflexibly or rigidly when unique circumstances might suggest otherwise
  • Sudden swerving into somebody's blind spot without first clearly making oneself visible through the wing mirror
  • Unfamiliarity with one's dashboard features, center console or other interior handling devices after a recent car purchase
  • Lack of visibility due to windshield design, dense fog or sun glare
  • People-watching.
  • Traffic safety culture, a variety of aspects of safety culture could impact on the number of crashes.

Prevention

See also: Road traffic safety and Collision avoidance system

A large body of knowledge has been amassed on how to prevent car crashes, and reduce the severity of those that do occur.

United Nations

Owing to the global and massive scale of the issue, with predictions that by 2020 road traffic deaths and injuries will exceed HIV/AIDS as a cause of death and disability, the United Nations and its subsidiary bodies have passed resolutions and held conferences on the issue. The first United Nations General Assembly resolution and debate was in 2003 The World Day of Remembrance for Road Traffic Victims was declared in 2005. In 2009 the first high level ministerial conference on road safety was held in Moscow.

The World Health Organization, a specialized agency of the United Nations Organization, in its Global Status Report on Road Safety 2009, estimates that over 90% of the world's fatalities on the roads occur in low-income and middle-income countries, which have only 48% of the world's registered vehicles, and predicts road traffic injuries will rise to become the fifth leading cause of death by 2030.

The United Nations' Sustainable Development Goal 3, target 3.6 is directed at reducing road injuries and deaths. February 2020 saw a global ministerial conference which brought the Stockholm Declaration, setting a target to reduce global traffic deaths and injuries by 50% within ten years. The decade of 2021–2030 was declared the second decade of road safety.

Collision migration

Collisions migration refers to a situation where action to reduce road traffic collisions in one place may result in those collisions resurfacing elsewhere. For example, an accident blackspot may occur at a dangerous bend. The treatment for this may be to increase signage, post an advisory speed limit, apply a high-friction road surface, add crash barriers or any one of a number of other visible interventions. The immediate result may be to reduce collisions at the bend, but the subconscious relaxation on leaving the "dangerous" bend may cause drivers to act with fractionally less care on the rest of the road, resulting in an increase in collisions elsewhere on the road, and no overall improvement over the area. In the same way, increasing familiarity with the treated area will often result in a reduction over time to the previous level of care and may result in faster speeds around the bend due to perceived increased safety (risk compensation).

Epidemiology

Main article: Epidemiology of motor vehicle collisions
Unlike most other developed countries, per capita traffic collision deaths in the US reversed their decline in the early 2010s.
Death rate from road collisions, in 2019, Central African Republic and Saudi Arabia being shaded red

In 2004 50 million more were injured in motor vehicle collisions. In 2013, between 1.25 million and 1.4 million people were killed in traffic collisions, up from 1.1 million deaths in 1990. That number represents about 2.5% of all deaths. Approximately 50 million additional people were injured in traffic collisions, a number unchanged from 2004.

India recorded 105,000 traffic deaths in a year, followed by China with over 96,000 deaths. This makes motor vehicle collisions the leading cause of injury and death among children worldwide 10–19 years old (260,000 children die a year, 10 million are injured) and the sixth leading preventable cause of death in the United States. In 2019, there were 36,096 people killed and 2.74 million people injured in motor vehicle traffic crashes on roadways in the United States. In the state of Texas alone, there were a total of 415,892 traffic collisions, including 3,005 fatal crashes in 2012. In Canada, they are the cause of 48% of severe injuries.

Crash rates

The safety performance of roadways is almost always reported as a rate. That is, some measure of harm (deaths, injuries, or number of crashes) divided by some measure of exposure to the risk of this harm. Rates are used so the safety performance of different locations can be compared, and to prioritize safety improvements.

Common rates related to road traffic fatalities include the number of deaths per capita, per registered vehicle, per licensed driver, or per vehicle mile or kilometer traveled. Simple counts are almost never used. The annual count of fatalities is a rate, namely, the number of fatalities per year.

There is no one rate that is superior to others in any general sense, it depends on the question asked and the available data. Some agencies concentrate on crashes per total vehicle distance traveled and others combine rates. Iowa, for example, selects high collision locations based on a combination of crashes per million miles traveled, crashes per mile per year, and value loss (crash severity).

Fatality

The definition of a road-traffic fatality varies from country to country. In the United States, the definition used in the Fatality Analysis Reporting System (FARS) run by the National Highway Traffic Safety Administration (NHTSA) is a person who dies within 30 days of a crash on a US public road involving a vehicle with an engine, the death being the result of the crash.

Trend of road traffic fatalities in Italy by user category: drivers, pedestrians, and passengers, from 2013 to 2023

In the U.S., therefore, if a driver has a non-fatal heart attack that leads to a road-traffic crash that causes death, that is a road-traffic fatality. If the heart attack causes death prior to the crash, it is not a road-traffic fatality.

The definition of a road-traffic fatality can change with time in the same country. For example, fatality was defined in France as a person who dies in the six days (pre 2005) after the collision and was subsequently changed to the 30 days (post 2005) after the collision.

History

The fardier à vapeur of Nicolas-Joseph Cugnot allegedly crashed into a wall in 1771.

The world's first recorded road traffic death involving a motor vehicle occurred on 31 August 1869. Irish scientist Mary Ward died when she fell out of her cousins' steam car and was run over by it.

The British road engineer J. J. Leeming, compared the statistics for fatality rates in Great Britain, for transport-related incidents both before and after the introduction of the motor vehicle, for journeys, including those once by water that now are undertaken by motor vehicle: For the period 1863–1870 there were: 470 fatalities per million of population (76 on railways, 143 on roads, 251 on water); for the period 1891–1900 the corresponding figures were: 348 (63, 107, 178); for the period 1931–1938: 403 (22, 311, 70) and for the year 1963: 325 (10, 278, 37). Leeming concluded that the data showed that "travel accidents may even have been more frequent a century ago than they are now, at least for men".

Truck collision with house in Compstall, United Kingdom (1914)
A traffic collision in 1952

He also compared the circumstances around road deaths as reported in various American states before the widespread introduction of 55 mph (89 km/h) speed limits and drunk-driving laws.

They took into account thirty factors which it was thought might affect the death rate. Among these were included the annual consumption of wine, of spirits and of malt beverages—taken individually—the amount spent on road maintenance, the minimum temperature, certain of the legal measures such as the amount spent on police, the number of police per 100,000 inhabitants, the follow-up programme on dangerous drivers, the quality of driver testing, and so on. The thirty factors were finally reduced to six by eliminating those found to have small or negligible effect. The final six were:

  1. The percentage of the total state highway mileage that is rural
  2. The percent increase in motor vehicle registration
  3. The extent of motor vehicle inspection
  4. The percentage of state-administered highway that is surfaced
  5. The average yearly minimum temperature
  6. The income per capita

These are placed in descending order of importance. These six accounted for 70% of the variations in the rate.

United States judges prioritized pedestrians' rights in city streets when early 20th century automobiles appeared. Pedestrian injuries were regarded as the fault of a motorist driving too fast. As automobile ownership increased, the rate of traffic deaths in the United States doubled from 1915 to 1921 when it reached 12 deaths per 100,000 Americans. The right to walk was considered dispensable a century later in 2021, when the annual death rate was 12.9 per 100,000. Safety focus on protecting the occupants of automobiles has victimized bicyclists and pedestrians whose injuries are attributed to individual carelessness. From 2010 to 2019, fatalities rose 36% for bicyclists and nearly doubled for those on foot. Reasons include larger vehicles, faster driving, and digital distractions making walking and biking in the United States far more dangerous than in other comparable nations.

The world's first autonomous car incident resulting in the death of a pedestrian occurred on 18 March 2018 in Arizona. The pedestrian was walking her bicycle outside of the crosswalk, and died in the hospital after she was struck by a self-driving car being tested by Uber.

Society and culture

Economic costs

Police parking in Poland with vehicles impounded after car accidents

The global economic cost of MVCs was estimated at $518 billion per year in 2003, and $100 billion in developing countries. The Centers for Disease Control and Prevention estimated the U.S. cost in 2000 at $230 billion. A 2010 US report estimated costs of $277 billion, which included lost productivity, medical costs, legal and court costs, emergency service costs (EMS), insurance administration costs, congestion costs, property damage, and workplace losses. "The value of societal harm from motor vehicle crashes, which includes both economic impacts and valuation for lost quality-of-life, was $870.8 billion in 2010. Sixty-eight percent of this value represents lost quality-of-life, while 32 percent are economic impacts."

Traffic collision affect the national economy as the cost of road injuries are estimated to account for 1.0% to 2.0% of the gross national product (GNP) of every country each year. A recent study from Nepal showed that the total economic costs of road injuries were approximately $122.88 million, equivalent to 1.52% of the total Nepal GNP for 2017, indicating the growing national financial burden associate with preventable road injuries and deaths.

The economic cost to the individuals involved in an MVC varies widely depending on geographic distribution, and varies largely on depth of accident insurance cover, and legislative policy. In the UK for example, a survey conducted using 500 post-accident insurance policy customers, showed an average individual financial loss of £1300.00. This is due in part to voluntary excesses that are common tactics used to reduce overall premium, and in part due to under valuation of vehicles. By contrast, Australian insurance policy holders are subject to an average financial loss of $950.00 AUD.

Legal consequences

See also: Vehicle insurance and Hit and run § Country-specific penalties

There are a number of possible legal consequences for causing a traffic collision, including:

  • Traffic citations: drivers who are involved in a collision may receive one or more traffic citations for improper driving conduct such as speeding, failure to obey a traffic control device, or driving under the influence of drugs or alcohol. Convictions for traffic violations are usually penalized with fines, and for more severe offenses, the suspension or revocation of driving privileges.
  • Civil lawsuits: a driver who causes a traffic collision may be sued for damages resulting from the collision, including damages to property and injuries to other persons. Companies can be held liable if their employees cause motor vehicle crashes under a theory of vicarious liability. Other times, injured people can file a product liability lawsuit against a company that designed or distributed a dangerous vehicle or car part.
  • Criminal prosecution: More severe driving misconduct, including impaired driving, may result in criminal charges against the driver. In the event of a fatality, a charge of vehicular homicide is occasionally prosecuted, especially in cases involving alcohol. Convictions for alcohol offenses may result in the revocation or long term suspension of the driver's license, and sometimes jail time, mandatory drug or alcohol rehabilitation, or both.

Fraud

Sometimes, people may make false insurance claims or commit insurance fraud by staging collisions or jumping in front of moving cars.

United Kingdom

In the United Kingdom, the Pre-Action Protocol for Low Value Personal Injury Claims in Road Traffic Accidents from 31 July 2013, otherwise known as the RTA Protocol,

describes the behaviour the court expects of the parties prior to the start of proceedings where a claimant claims damages valued at no more than the Protocol upper limit as a result of a personal injury sustained by that person in a road traffic accident.

As of February 2022 the "upper limit" is £25,000 for an accident which occurred on or after 31 July 2013; the limit under a previous version of the protocol was £10,000 for an accident which had occurred on or after 30 April 2010 but before 31 July 2013.

United States

Motor vehicle crashes are the leading cause of death in the workplace in the United States accounting for 35 percent of all workplace fatalities. In the United States, individuals involved in motor vehicle collisions may be held financially liable for the consequences of a collision, including property damage, and injuries to passengers and drivers. Where another driver's vehicle is damaged as the result of a crash, some states allow the owner of the vehicle to recover both the cost of repair for the diminished value of the vehicle from the at-fault driver. Because the financial liability that results from causing a crash is so high, most U.S. states require drivers to carry liability insurance to cover these potential costs. In the event of serious injuries or fatalities, it is possible for injured persons to seek compensation in excess of the at-fault driver's insurance coverage.

Liability rules vary from state to state, with some laws adopting a tort system and others a no-fault insurance system. Most use a tort-based system, wherein injured people seek financial compensation from at-fault parties' insurance carriers. Twelve states take the no-fault approach, where injured parties file their primary claims with their own insurer.

Further information: Full tort and limited tort automobile insurance

Tort reform has changed the legal landscape. For example, Michigan had a unique no-fault system that guaranteed lifetime benefits for people injured in motor vehicle collisions. This changed in 2020, when the state legislature amended the laws, allowing people to opt for less coverage. While the aim of these laws is to reduce the cost of insurance premiums, catastrophically injured claimants might find themselves underinsured.

In some cases, involving a defect in the design or manufacture of motor vehicles, such as where defective design results in SUV rollovers or sudden unintended acceleration, crashes caused by defective tires, or where injuries are caused or worsened as a result of defective airbags, it is possible that the manufacturer will face a class action lawsuit.

Art

American Landscape by Jan A. Nelson (graphite on Strathmore rag, 1974)

Cars have come to represent a part of the American Dream of ownership coupled with the freedom of the road. The violence of a car wreck provides a counterpoint to that promise and is the subject of artwork by a number of artists, such as John Salt and Li Yan. Though English, John Salt was drawn to American landscapes of wrecked vehicles like Desert Wreck (airbrushed oil on linen, 1972). Similarly, Jan Anders Nelson works with the wreck in its resting state in junkyards or forests, or as elements in his paintings and drawings. American Landscape is one example of Nelson's focus on the violence of the wreck with cars and trucks piled into a heap, left to the forces of nature and time. This recurring theme of violence is echoed in the work of Li Yan. His painting Accident Nº 6 looks at the energy released during a crash.

Andy Warhol used newspaper pictures of car wrecks with dead occupants in a number of his Disaster series of silkscreened canvases. John Chamberlain used components of wrecked cars (such as bumpers and crumpled sheet metal fenders) in his welded sculptures.

Crash is a 1973 novel by English author J. G. Ballard about car-crash sexual fetishism that was made into a film by David Cronenberg in 1996.

See also

Notes

  1. Although some sources assert Mary Ward to be the first person killed by a motor vehicle, a steam carriage fatal collision in July 1834 preceded Ward's demise. In the 1834 event, a steam carriage constructed by John Scott Russell and operating a public transport service between Glasgow and Paisley overturned, causing a boiler explosion which killed four or five passengers and injured others. Russell's carriage comprised a steam engine pulling a combined passenger and fuel tender; Mary Ward's collision may be characterized as the first fatality involving a vehicle in the form of a contemporary motorcar, in which the engine is mounted and passengers ride on the same frame.

References

  1. Peden, Margie; Scurfield, Richard; Sleet, David; et al. (2004). World report on road traffic injury prevention. Geneva: World Health Organization. ISBN 9241562609. Retrieved 9 October 2020.
  2. Reid, Carlton (17 November 2019). "Crash Not Accident: Better Road-Safety Reporting Could Save Lives, Show Researchers". Forbes. Archived from the original on 13 April 2023. Retrieved 12 April 2023.
  3. https://www.rc-rg.com/_files/ugd/c05c10_3f73627e43894c8496f379a2b9e84fd3.pdf
  4. Vos, Theo (22 August 2015). "Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013". Lancet. 386 (9995): 743–800. doi:10.1016/s0140-6736(15)60692-4. PMC 4561509. PMID 26063472.
  5. ^ Murray, Christopher J L (17 December 2014). "Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013". Lancet. 385 (9963): 117–71. doi:10.1016/S0140-6736(14)61682-2. PMC 4340604. PMID 25530442.
  6. Global status report on road safety 2013: Supporting a decade of action (in English and Russian). Geneva, Switzerland: WHO. 2013. ISBN 978-92-4-156456-4. Archived from the original (PDF) on 20 March 2013. Retrieved 3 October 2014.
  7. ^ "World report on road traffic injury prevention". WHO. Archived from the original on 6 February 2014.
  8. "The 2009 Statistical Abstract: Motor Vehicle Accidents and Fatalities". U.S. Census Bureau. Archived from the original on 25 December 2007.
  9. "Statistics and Data – Road and Motor Vehicle Safety – Road Transportation". Transport Canada. Archived from the original on 19 November 2013.
  10. "Current Incidents". Traffic Scotland. Archived from the original on 13 January 2022. Retrieved 19 March 2015.
  11. "M1 Motorway".
  12. "It's No Accident: Advocates Want to Speak of Car 'Crashes' Instead". The New York Times. 22 May 2016. Retrieved 30 May 2018.
  13. "When a car 'crash' isn't an 'accident' — and why the difference matters". The Washington Post. 24 August 2015. Retrieved 30 May 2018.
  14. "Saving Lives and Protecting People from Injuries and Violence" (PDF). Retrieved 8 March 2020.
  15. Hot Fuzz clip: Accident Implies There's Nobody To Blame, 9 October 2014, archived from the original on 30 October 2021, retrieved 14 June 2021
  16. "A Crash is Not an Accident". Federal Motor Carrier Safety Administration. Retrieved 12 April 2023.
  17. ^ "Crash Not Accident". Michigan Department of Transportation. Retrieved 12 April 2023.
  18. "2021 RESOLUTUION: CRASH, NOT ACCIDENT". American Automobile Association. Retrieved 13 April 2023.
  19. "Why INRIX Now Uses "Crash" (Not "Accident")". INRIX. Retrieved 13 April 2023.
  20. Laker, Laura (2023). "Road Collision Reporting Guidelines" (PDF).
  21. "Crashes Are No Accident". Maryland Department of Transportation. Retrieved 12 April 2023.
  22. "Why we say "crash" not "accident"". Portland Bureau of Transportation. Retrieved 12 April 2023.
  23. Charles, Geoffrey (11 March 1969). "Cars And Drivers Accident prevention instead of blame". The Times. Quoting from JJ Leeming in Accidents and their prevention: "Blame for accidents seems to me to be at best irrelevant and at worst actively harmful." ... "Much of the Leeming case is that by attributing blame and instituting proceedings against the motorist, the law virtually guarantees that none of the participants will be wholly truthful, so that the factors that really led to the accident are never discovered."
  24. Allen, Samantha (15 March 2016). "The Brutal Truth About Car Crash Suicide". The Daily Beast Company LLC. Retrieved 3 December 2017.
  25. Crosby, Rachel (18 September 2017). "24 face fraud charges in Las Vegas car crash scheme". Las Vegas Review-Journal. Retrieved 3 December 2017.
  26. "Staged Collisions: Separating Accidents from Fraud" (PDF). Insurance Institute of Ireland. 7 April 2014. Archived from the original (PDF) on 4 December 2017. Retrieved 3 December 2017.
  27. Palmer, Ken (6 July 2017). "Police: Lansing man deliberately caused crash that injured woman". Lansing State Journal. Retrieved 3 December 2017.
  28. "The Facts: Vehicular Homicide and the Impaired Driver". United States Department of Transportation. Archived from the original on 28 April 2009. Retrieved 28 May 2023.
  29. "Transportation Safety". CDC. Retrieved 26 February 2023.
  30. Academy staff (September 2004). "The Shocking Truth about Road Trauma – Key text". NOVA – Science in the News. Austrian Academy of Science. Archived from the original on 6 January 2013. Retrieved 20 November 2014.
  31. Butler, Dennis J.; Moffic, H. Steven; Turkal, Nick W. (1 August 1999). "Post-traumatic Stress Reactions Following Motor Vehicle Accidents". American Family Physician. 60 (2): 524–530. PMID 10465227. Retrieved 7 May 2018.
  32. ^ Pishue, Bob (2020). "COVID-19 Effect on Collisions on Interstates and Highways in the US". nationalacadamies.org. INRIX Research. Retrieved 10 January 2022.
  33. ^ Harry Lum; Jerry A. Reagan (Winter 1995). "Interactive Highway Safety Design Model: Accident Predictive Module". Public Roads Magazine.
  34. ^ Robertson, LS. Injury Epidemiology: Fourth Edition. Free online at www.nanlee.net.
  35. "Traffic Safety Facts 2019". NHTSA. National Highway Traffic Safety Administration. August 2021. p. 123. Retrieved 20 November 2021.
  36. "New data from Virginia Tech Transportation Institute provides insight into cell phone use and driving distraction". www.vtnews.vt.edu. Archived from the original on 25 February 2021. Retrieved 11 March 2021.
  37. St. Fleur, Nicholas (24 February 2016). "Reading This While You Drive Could Increase Your Risk of Crashing Tenfold". New York Times. Retrieved 29 February 2016.
  38. "I'm a good driver: you're not!". Drivers.com. 11 February 2000.
  39. ^ The Good, the Bad and the Talented: Young Drivers' Perspectives on Good Driving and Learning to Drive (PDF) (Road Safety Research Report No. 74 ed.). Transport Research Laboratory. January 2007. Archived from the original (PDF) on 16 February 2008. Retrieved 4 January 2008.
  40. "Home". Galway Independent. Archived from the original on 10 May 2009. Retrieved 15 January 2012.
  41. Thew, Rosemary (2006). "Royal Society for the Prevention of Accidents Conference Proceedings" (PDF). Driving Standards Agency. Archived from the original (PDF) on 16 February 2008. Most at risk are young males between 17 and 25 years
  42. "forecasting older driver's accident rates". Department for Transport. Archived from the original on 6 February 2007.
  43. ^ Leeming, J.J. (1969). Road Accidents: Prevent or Punish?. Cassell. ISBN 978-0-304-93213-9.
  44. Sagberg, Fosser, & Saetermo (1997). An investigation of behavioral adaptation to airbags and antilock brakes among taxi drivers (29 ed.). Accident Analysis and Prevention. pp. 293–302.{{cite book}}: CS1 maint: multiple names: authors list (link)
  45. Adams, John (1982). "The efficacy of seat belt legislation" (PDF). SAE Transactions. Archived from the original (PDF) on 23 June 2006. Retrieved 3 January 2008.
  46. Ben Hamilton-Baillie (Autumn 2005). "Streets ahead" (PDF). Countryside Voice. Archived from the original (PDF) on 13 April 2008. Retrieved 10 March 2008.
  47. Lascher, Edward L. and Michael R. Powers. The economics and politics of choice no-fault insurance. Springer, 2001
  48. Dornstein, Ken. Accidentally, on Purpose: The Making of a Personal Injury Underworld in America. Palgrave Macmillan, 1998, p.3
  49. "Synthesis of Safety Research Related to Speed and Speed Limits" (PDF). U.S. Department of Transportation. Archived from the original (PDF) on 28 May 2010. Retrieved 5 March 2008.
  50. NHTSA (April 2020). "Traffic Safety Facts – Speeding". NHTSA (National Highway Traffic Safety Administration). Retrieved 28 April 2021.
  51. Michigan Traffic Crash Facts (2019). "Fact Sheets – Speeding" (PDF). Michigan Traffic Crash Facts. Retrieved 28 April 2021.
  52. "Problem definition and countermeasures". NSW Roads and Traffic Authority. Archived from the original on 21 November 2002. Retrieved 20 May 2008.
  53. ^ "The biggest killer on our roads". NSW Roads and Traffic Authority. Archived from the original on 21 November 2002. Retrieved 5 March 2008.
  54. "Speeding research". NSW Roads and Traffic Authority. Archived from the original on 21 November 2002. Retrieved 5 March 2008.
  55. "Road Casualties Great Britain: 2006" (PDF). UK Department for Transport. Archived from the original (PDF) on 13 April 2008. Retrieved 5 March 2008.
  56. Leibowitz, Herschel W.; Owens, D. Alfred; Tyrrell, Richard A. (1998). "The assured clear distance ahead rule: implications for nighttime traffic safety and the law". Accident Analysis & Prevention. 30 (1): 93–99. doi:10.1016/S0001-4575(97)00067-5. PMID 9542549.
  57. "Assured Clear Distance Ahead Law & Legal Definition". US Legal, Inc. Retrieved 27 August 2013. ACDA or "assured clear distance ahead" requires a driver to keep his motor vehicle under control so that he can stop in the distance in which he can clearly see.
  58. Lawyers Cooperative Publishing. New York Jurisprudence. Automobiles and Other Vehicles. Miamisburg, OH: LEXIS Publishing. p. § 720. OCLC 321177421. It is negligence as a matter of law to drive a motor vehicle at such a rate of speed that it cannot be stopped in time to avoid an obstruction discernible within the driver's length of vision ahead of him. This rule is known generally as the 'assured clear distance ahead' rule * * * In application, the rule constantly changes as the motorist proceeds, and is measured at any moment by the distance between the motorist's vehicle and the limit of his vision ahead, or by the distance between the vehicle and any intermediate discernible static or forward-moving object in the street or highway ahead constituting an obstruction in his path. Such rule requires a motorist in the exercise of due care at all times to see, or to know from having seen, that the road is clear or apparently clear and safe for travel, a sufficient distance ahead to make it apparently safe to advance at the speed employed.
  59. Varghese, Cherian; Shankar, Umesh (May 2007). "Passenger Vehicle Occupant Fatalities by Day and Night – A Contrast". Washington, DC: National Highway Traffic Safety Administration. National Center for Statistics and Analysis. The passenger vehicle occupant fatality rate at nighttime is about three times higher than the daytime rate. ... The data shows a higher percentage of passenger vehicle occupants killed in speeding-related crashes at nighttime.
  60. McKernan, Megan (13 May 2015). "AAA Tests Shine High-Beam on Headlight Limitations". NewsRoom.AAA.com. AAA Automotive Research Center. Retrieved 3 July 2018. AAA's test results suggest that halogen headlights, found in over 80 percent of vehicles on the road today, may fail to safely illuminate unlit roadways at speeds as low as 40 mph. ... high-beam settings on halogen headlights ... may only provide enough light to safely stop at speeds of up to 48 mph, leaving drivers vulnerable at highway speeds ... Additional testing found that while the advanced headlight technology found in HID and LED headlights illuminated dark roadways 25 percent further than their halogen counter parts, they still may fail to fully illuminate roadways at speeds greater than 45 mph. High-beam settings on these advanced headlights offered significant improvement over low-beam settings, lighting distances of up to 500 feet (equal to 55 mph). Despite the increase, even the most advanced headlights fall 60 percent short of the sight distances that the full light of day provides.
  61. "www.infrastructure.gov.au" (PDF). Archived from the original (PDF) on 26 August 2021. Retrieved 25 October 2009.
  62. "Regulatory Impact and Small Business Analysis for Hours of Service Options". Federal Motor Carrier Safety Administration. Archived from the original on 19 June 2013. Retrieved 22 February 2008.
  63. "Road Safety in Canada" (PDF). Transport Canada. p. 17.
  64. Kaywood, A (1982). Drive Right for Safety and Savings. Scott, Foresman. p. 248. ISBN 9780673100863.
  65. ^ Higgins, J. Stephen; Michael, Jeff; Austin, Rory; Åkerstedt, Torbjörn; Van Dongen, Hans P. A.; Watson, Nathaniel; Czeisler, Charles; Pack, Allan I.; Rosekind, Mark R. (25 January 2017). "Asleep at the Wheel—The Road to Addressing Drowsy Driving". Sleep. 40 (2). doi:10.1093/sleep/zsx001. ISSN 0161-8105. PMID 28364516.
  66. "Hard-Rock and Classic Music Could Lead to Road Accidents, New Survey Says". Infoniac.com. Retrieved 13 November 2011.
  67. "Understanding the Distracted Brain, Why Driving While Using Hands-Free Cell Phones is Risky Behavior" (PDF). National Safety Council. 2012.
  68. Road Safety Part 1: Alcohol, drugs, ageing & fatigue (Research summary, TRL Report 543 ed.). UK Department for Transport. Spring 2003. Archived from the original on 29 January 2007. Retrieved 1 January 2008.
  69. Road Safety Part 1: Alcohol, drugs, ageing & fatigue (Research summary, Transport Research Laboratory Road Safety Report No. 24 ed.). UK Department for Transport. Spring 2003. Archived from the original on 2 February 2010. Retrieved 1 January 2008.
  70. Ray Fuller; Jorge A. Santos (2002). Human Factors for Highway Engineers. Emerald. p. 15. ISBN 978-0080434124.
  71. Hill, Joanne. "Getting Ahead: Returning Britain to European leadership in road casualty reduction" (PDF). Campaign for Safe Road Design. Archived from the original (PDF) on 22 September 2013. Retrieved 1 October 2008.
  72. ^ Broughton, J.; Walter, L. (February 2007). Trends in Fatal Car Accidents: Analysis of CCIS Data. Project Report PPR 172. Transport Research Laboratory.
  73. David Bjerklie (30 November 2006). "The Hidden Danger of Seat Belts". Time Inc. ISSN 0040-781X. Archived from the original on 10 December 2006. Retrieved 26 February 2008.
  74. Lund, Adrian K.; Zador, Paul (March 1984). "Mandatory belt use and driver risk taking". Risk Analysis. 4 (1): 41–53. Bibcode:1984RiskA...4...41L. doi:10.1111/j.1539-6924.1984.tb00130.x.
  75. "Safety First: the SSV/SRV cars". AROnline. Keith Adams. Archived from the original on 8 October 2007.
  76. "Annual transport accidents and casualties". UK Department for Transport. Archived from the original on 16 December 2007. Retrieved 1 January 2008.
  77. "Fahrunfalle: Dank ESP verunglucken Mercedes-Personenwagen seltener (in German)". Mercedes-Benz. Archived from the original (Graph of accident share) on 16 February 2008. Retrieved 28 December 2007. Road accidents are rare with ESP Mercedes passenger cars
  78. Thomas, Ken (15 September 2006). "U.S. to Require Anti-Rollover Technology on New Cars by 2012". Insurance Journal. Archived from the original on 26 December 2007. Retrieved 28 December 2007.
  79. Vasan, S.S.; Gururaj, G. (22 October 2021). "Unhelmeted two-wheeler riders in India". The National Medical Journal of India. 34 (3): 171–172. doi:10.25259/NMJI_455_18. PMID 34825550. S2CID 240491852.
  80. Road Casualties in Great Britain, Main Results (Transport Statistics Bulletin ed.). Office for National Statistics. 2005. Archived from the original on 17 July 2007. Retrieved 1 January 2008.
  81. "The hidden inequality of who dies in car crashes". The Washington Post. 1 October 2015. Retrieved 24 January 2018. But that progress obscures a surprising type of inequality: The most disadvantaged are more likely — and have grown even more likely over time — to die in car crashes than people who are well-off
  82. "The Geography of Car Deaths in America". Bloomberg.com. CityLab. 15 October 2015. Retrieved 24 January 2018. Car deaths are also higher in poorer states. The road death rate is negatively associated with GDP per capita (-.47) and even more so with per capita income (-.66).
  83. Grossetete, Mathieu (August 2016). "Des accidents de la route pas si accidentels" (in French). Le Monde diplomatique. Retrieved 24 January 2018. Alors qu'ils ne représentent que 13,8 % de la population française âgée de 15 ans et plus, les ouvriers comptaient pour 22,1 % des 3 239 personnes décédées sur la route en 2007 et pour 19 % des blessés hospitalisés. À l'inverse, les cadres supérieurs, professions libérales et chefs d'entreprise (8,4 % de la population) ne totalisaient que 2,9 % des morts et blessés
  84. Grossetete, Mathieu (2010). L'enracinement social de la mortalité routière (in French). Actes de la recherche en sciences sociales. ISBN 9782021030297. Retrieved 10 February 2018.
  85. Yair G, Mahalel D. (30 September 2010). "Who by accident? The social morphology of car accidents". Risk Anal. 30 (9): 1411–23. Bibcode:2010RiskA..30.1411F. doi:10.1111/j.1539-6924.2010.01423.x. PMID 20840490. S2CID 43096927. For example, we find that drivers from low socioeconomic backgrounds are overinvolved in severe accidents with fatal outcomes
  86. ^ Calvert, Scott (1 October 2020). "Rate of Crash Deaths on U.S. Roads Rose During Coronavirus Pandemic". Dow Jones & Company. Retrieved 5 January 2022. In first half of 2020, traffic volumes fell but speeding and other risky behaviors were up
  87. "Preliminary Semiannual Estimates". NSC.org. National Safety Council. July 2021. Retrieved 5 January 2022.
  88. Craven McGinty, Jo (8 January 2021). "Car-Crash Death Rate Surged in 2020". Dow Jones Inc. Retrieved 10 January 2022.
  89. "Chiffres de sécurité routière en 2020". interieur.gouv.fr. French Ministry of Interior. 29 January 2021. Retrieved 5 January 2022.
  90. Mindell, Jodi (2010). A Clinical Guide to Pediatric Sleep. p. 259.
  91. Bryan, Carson (2008). William Divot Mulligan. Xulon Press. p. 127. ISBN 9781606474723.
  92. Visagie, Brian (2014). The K53 Yard Test Made Easy: A Practical Guide for Learner Drivers. p. 48.
  93. Katz, Diane (1979). Integrated Safe Driving Information System Development: Final report. p. 27.
  94. Popular Mechanics – Mar 1959 – Page 94, Vol. 111, No. 3
  95. Varmazyar, S., Mortazavi, S. B., Arghami, S., & Hajizadeh, E. (2016). Relationship between organisational safety culture dimensions and crashes. International journal of injury control and safety promotion, 23(1), 72–78.
  96. United Nations General Assembly Session 60 Verbatim Report 38. A/60/PV.38 page 6. 26 October 2005. Retrieved 9 July 2008.
  97. United Nations General Assembly Session 57 Verbatim Report 86. Global road safety crisis. page 2. 22 May 2003. Retrieved 9 July 2008.
  98. "Road Traffic Deaths Index 2009 Country Rankings". Retrieved 2 February 2010.
  99. Jiao, Chengwu; Yang, Manjuan; Hao, Yubo (2009). "Analysis of Characters and Causes of Road Traffic Accident Migration". Icctp 2009. Ninth International Conference of Chinese Transportation Professionals (ICCTP). pp. 1–7. doi:10.1061/41064(358)94. ISBN 9780784410646.
  100. "Accident 'migration' after remedial treatment at accident blackspots". trafficresearch.co.uk. 12 August 2020. Archived from the original on 9 May 2021. Retrieved 12 May 2016.
  101. "OECD Data / Road Accidents". data.OECD.org. Organisation for Economic Co-operation and Development (OECD). 15 December 2023. Archived from the original on 6 July 2023.
  102. Leonhardt, David (11 December 2023). "The Rise in U.S. Traffic Deaths / What's behind America's unique problem with vehicle crashes?". The New York Times. Archived from the original on 14 December 2023.
  103. "Death rate from road accidents". Our World in Data. Retrieved 5 March 2020.
  104. ^ World health statistics 2018: monitoring health for the SDGs, sustainable development goals (PDF). World Health Organization. 2018. ISBN 9789241565585.
  105. ^ "World report on road traffic injury prevention" (PDF). World Health Organization.
  106. ´"Nearly 300 Indians die daily on roads, shows report". Business Standard. 17 August 2009.
  107. "UN raises child accidents alarm". BBC News. 10 December 2008. Retrieved 25 May 2010.
  108. Mokdad AH, Marks JS, Stroup DF, Gerberding JL (March 2004). "Actual causes of death in the United States, 2000" (PDF). JAMA. 291 (10): 1238–45. doi:10.1001/jama.291.10.1238. PMID 15010446.
  109. NHTSA (December 2020). "Overview of Motor Vehicle Crashes in 2019". National Highway Traffic Safety Administration. Retrieved 11 March 2021.
  110. "Motor Vehicle Collisions Most Frequent Cause of Severe Injuries". Archived from the original on 26 November 2006.
  111. Hallmark, Shauna (June 2002). "Evaluation of the Iowa DOT's Safety Improvement Candidate List Process" (PDF) (Final Report). Center for Transportation Research and Education, Iowa State university. Archived from the original (PDF) on 24 September 2015. Retrieved 20 November 2014.
  112. "FARS". Fars.nhtsa.dot.gov. Retrieved 13 November 2011.
  113. International Road Assistance Programme – International Transport Statistics Database
  114. The first known account of this crash dates to 1801."Le fardier de Cugnot". Archived from the original on 26 February 2011.
  115. "Mary Ward 1827–1869". King's County Chronicle. Offaly Historical & Archaeological Society. 2 September 2007. Archived from the original on 1 February 2010. Retrieved 20 November 2014.
  116. Norton, Peter (10 June 2022). "When Cities Made Monuments to Traffic Deaths". Bloomberg.com. Bloomberg News. Retrieved 12 June 2022.
  117. "Self-Driving Uber Car Kills Pedestrian in Arizona, Where Robots Roam". The New York Times. 19 March 2018. Retrieved 19 March 2018.
  118. "Self-driving Uber kills Arizona woman in first fatal crash involving pedestrian". The Guardian. 19 March 2018. Retrieved 19 March 2018.
  119. "CDC – Motor Vehicle Safety". Centers for Disease Control and Prevention. 24 June 2021.
  120. "The Economic and Societal Impact of Motor Vehicle Crashes, 2010", by Lawrence Blincoe, Ted R. Miller, Ph.D., Eduard Zaloshnja, Ph.D., Bruce A. Lawrence, Ph.D., DOT HS 812 013, Washington, D.C.: May 2014.
  121. Margie, Peden (2004). World report on road traffic injury prevention. Geneva: World Health Organization. ISBN 9241562609.
  122. Banstola, Amrit; Kigozi, Jesse; Barton, Pelham; Mytton, Julie (25 June 2020). "Economic Burden of Road Traffic Injuries in Nepal". International Journal of Environmental Research and Public Health. 17 (12): 4571. doi:10.3390/ijerph17124571. PMC 7345187. PMID 32630384.
  123. Robottom, Adam (26 July 2021). "UK Car Insurance Company Statistical Value". CarCrashProfit. Archived from the original on 28 January 2022. Retrieved 19 September 2021.
  124. Wanworth, Mark. "Quarterly General Insurance Statistics". (APRA) Australia Prudential Regulatory Authority. Retrieved 15 September 2021.
  125. Cooper, Peter J. (Summer 1997). "The relationship between speeding behaviour (as measured by violation convictions) and crash involvement". Journal of Safety Research. 28 (2): 83–95. doi:10.1016/S0022-4375(96)00040-0.
  126. Shapiro, Joseph (29 December 2014). "Can't Pay Your Fines? Your License Could Be Taken". NPR. All Things Considered. Retrieved 31 October 2017.
  127. Roper, Eric (22 May 2016). "In crashes that kill pedestrians, the majority of drivers don't face charges". Star Tribune. Retrieved 31 October 2017.
  128. Nichols, James L.; Ross, H. Laurence (1991). "The Effectiveness of Legal Sanctions in Dealing with Drinking Drivers" (PDF). Journal of Safety Research. 22 (2): 93.
  129. Galperina, Marina (13 June 2012). "Why Russians Are Obsessed With Dash-Cams". Jalopnik. Retrieved 19 November 2012.
  130. ^ Ministry of Justice (2013), Pre-Action Protocol for Low Value Personal Injury Claims in Road Traffic Accidents from 31 July 2013, updated 10 February 2022, accessed 2 June 2022
  131. Peden, Margie; Scurfield, Richard; Sleet, David; Mohan, Dinesh; Hyder, Adnan A.; Jarawan, Eva; Mathers, Colin (2004). World report on road traffic injury prevention. Geneva: World Health Organization. p. 44. ISBN 92-4-156260-9.
  132. "What is diminished value?". Insurance Information Institute. Retrieved 31 October 2017.
  133. Gusner, Penny (23 February 2012). "Do I have to pay if my liability limits are exceeded?". Nasdaq. Retrieved 31 October 2017.
  134. "Brief Explanation of Michigan's No-Fault Insurance" (PDF). Michigan.gov. Retrieved 31 July 2024.
  135. "Ford Settles Explorer Rollover Suit". CBS News. 28 November 2007. Retrieved 31 October 2017.
  136. Barash, Martina (12 October 2017). "Tesla's Access to Car Data: A New Tool in Disputes". Bloomberg BNA. Retrieved 31 October 2017.
  137. "Consumers Claim Tires Are Defective, File Class-Action Suit Against Goodyear". Wall Street Journal. 24 November 2000. Retrieved 31 October 2017.
  138. Wattles, Jackie (21 May 2017). "Have an exploding airbag? You might get $500". CNN Money. Retrieved 31 October 2017.
  139. "Desert Wreck". es.pinterest.com. Retrieved 13 February 2016.
  140. "American Landscape". www.janandersnelsonart.com. Retrieved 13 February 2016.
  141. "Accident Nº 6 detail". www.saatchigallery.com. Archived from the original on 16 February 2016. Retrieved 13 February 2016.
  142. "Accident Nº 6 detail". www.saatchigallery.com. Archived from the original on 16 February 2016. Retrieved 13 February 2016.
  143. "Wreckage in Art: A Driving Force in the Work of Jan Anders Nelson". medium.com. 23 May 2016. Retrieved 23 May 2016.
  144. "Andy Warhol Death And Disaster". YouTube. 20 November 2008. Archived from the original on 30 October 2021. Retrieved 14 February 2016.
  145. Kennedy, Randy (21 December 2011). "John Chamberlain, Who Wrested Rough Magic From Scrap Metal, Dies at 84". The New York Times. Retrieved 14 February 2016.

External links

ClassificationD
Traffic collisions
Main topics
Road collisions
Causes
Lists of traffic collisions
Related lists
Categories:
Traffic collision Add topic