Misplaced Pages

BFR algorithm

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "BFR algorithm" – news · newspapers · books · scholar · JSTOR (May 2018) (Learn how and when to remove this message)

The BFR algorithm, named after its inventors Bradley, Fayyad and Reina, is a variant of k-means algorithm that is designed to cluster data in a high-dimensional Euclidean space. It makes a very strong assumption about the shape of clusters: they must be normally distributed about a centroid. The mean and standard deviation for a cluster may differ for different dimensions, but the dimensions must be independent.

References

  1. Rajaraman, Anand; Ullman, Jeffrey; Leskovec, Jure (2011). Mining of Massive Datasets. New York, NY, USA: Cambridge University Press. pp. 257–258. ISBN 1107015359.
Category: