Misplaced Pages

Bell-shaped function

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Mathematical function having a characteristic "bell"-shaped curve
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Bell-shaped function" – news · newspapers · books · scholar · JSTOR (December 2018) (Learn how and when to remove this message)
The Gaussian function is the archetypal example of a bell shaped function

A bell-shaped function or simply 'bell curve' is a mathematical function having a characteristic "bell"-shaped curve. These functions are typically continuous or smooth, asymptotically approach zero for large negative/positive x, and have a single, unimodal maximum at small x. Hence, the integral of a bell-shaped function is typically a sigmoid function. Bell shaped functions are also commonly symmetric.

Many common probability distribution functions are bell curves.

Some bell shaped functions, such as the Gaussian function and the probability distribution of the Cauchy distribution, can be used to construct sequences of functions with decreasing variance that approach the Dirac delta distribution. Indeed, the Dirac delta can roughly be thought of as a bell curve with variance tending to zero.

Some examples include:

f ( x ) = a e ( x b ) 2 / ( 2 c 2 ) {\displaystyle f(x)=ae^{-(x-b)^{2}/(2c^{2})}}
  • Fuzzy Logic generalized membership bell-shaped function
f ( x ) = 1 1 + | x c a | 2 b {\displaystyle f(x)={\frac {1}{1+\left|{\frac {x-c}{a}}\right|^{2b}}}}
f ( x ) = sech ( x ) = 2 e x + e x {\displaystyle f(x)=\operatorname {sech} (x)={\frac {2}{e^{x}+e^{-x}}}}
f ( x ) = 8 a 3 x 2 + 4 a 2 {\displaystyle f(x)={\frac {8a^{3}}{x^{2}+4a^{2}}}}
φ b ( x ) = { exp b 2 x 2 b 2 | x | < b , 0 | x | b . {\displaystyle \varphi _{b}(x)={\begin{cases}\exp {\frac {b^{2}}{x^{2}-b^{2}}}&|x|<b,\\0&|x|\geq b.\end{cases}}}
f ( x ; μ , s ) = { 1 2 s [ 1 + cos ( x μ s π ) ] for  μ s x μ + s , 0 otherwise. {\displaystyle f(x;\mu ,s)={\begin{cases}{\frac {1}{2s}}\left&{\text{for }}\mu -s\leq x\leq \mu +s,\\0&{\text{otherwise.}}\end{cases}}}
f ( x ) = e x ( 1 + e x ) 2 {\displaystyle f(x)={\frac {e^{x}}{\left(1+e^{x}\right)^{2}}}}
f ( x ) = 1 ( 1 + x 2 ) 3 / 2 {\displaystyle f(x)={\frac {1}{(1+x^{2})^{3/2}}}}

Gallery

  • sech(x) (in blue) sech(x) (in blue)
  • Witch of Agnesi Witch of Agnesi
  • φb for b = 1 φb for b = 1
  • Raised cosine PDF Raised cosine PDF
  • Kaiser window Kaiser window

References

  1. Weisstein, Eric W. "Delta Function". mathworld.wolfram.com. Retrieved 2020-09-21.
  2. "Fuzzy Logic Membership Function". Retrieved 2018-12-29.
  3. "Generalized bell-shaped membership function". Retrieved 2018-12-29.
Category: