Misplaced Pages

Cavicularin

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Cavicularin
Names
IUPAC name 9,10,18,19-Tetrahydro-5,8:15,17-diethenobenzonaphthoxacyclotetradecin-3,12,21-triol
Identifiers
CAS Number
3D model (JSmol)
ChemSpider
PubChem CID
UNII
CompTox Dashboard (EPA)
InChI
  • InChI=1S/C28H22O4/c29-20-8-11-22-18(13-20)4-1-16-2-9-21(10-3-16)32-28-25(30)12-7-17-5-6-19-14-26(31)24(22)15-23(19)27(17)28/h2-3,7-15,29-31H,1,4-6H2Key: MCFLLKAHGNIXPF-UHFFFAOYSA-N
  • InChI=1/C28H22O4/c29-20-8-11-22-18(13-20)4-1-16-2-9-21(10-3-16)32-28-25(30)12-7-17-5-6-19-14-26(31)24(22)15-23(19)27(17)28/h2-3,7-15,29-31H,1,4-6H2Key: MCFLLKAHGNIXPF-UHFFFAOYAB
SMILES
  • c1cc2ccc1CCc3cc(ccc3-c4cc-5c(cc4O)CCc6c5c(c(cc6)O)O2)O
Properties
Chemical formula C28H22O4
Molar mass 422.480 g·mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). ☒verify (what is  ?) Infobox references
Chemical compound

Cavicularin is a natural phenolic secondary metabolite isolated from the liverwort Cavicularia densa. This macrocycle is unusual because it was the first compound isolated from nature displaying optical activity solely due to the presence of planar chirality and axial chirality. The specific rotation for (+)-cavicularin is +168.2°. It is also a very strained molecule. The para-substituted phenol ring is bent about 15° out of planarity, adopting a somewhat boat-like geometry. This type of angle strain in aromatic compounds is normally reserved for synthetic cyclophanes.

Cavicularin, three-dimensional representation

The liverwort was obtained from Mount Ishizuchi in the district of Shikoku. The material was dried for one day, ground to a powder and 5 grams were refluxed in methanol for 4 months to yield 2.5 mg (0.049%) of cavicularin after column chromatography and preparative TLC.

Total synthesis

In 2005 and again in 2011, the compound was prepared by total synthesis together with the unstrained compound riccardin C. In 2013, several other syntheses were reported for it and a racemic synthesis.

References

  1. M. Toyota; T. Yoshida; Y. Kan; S. Takaoka; Y. Asakawa (1996). "(+)-Cavicularin: A Novel Optically Active Cyclic Bibenzyl-Dihydrophenanthrene Derivative from the Liverwort Cavicularia densa Steph". Tetrahedron Letters. 37 (27): 4745–4748. doi:10.1016/0040-4039(96)00956-2.
  2. David C. Harrowven; Timothy Woodcock; Peter D. Howes (2005). "Total Synthesis of Cavicularin and Riccardin C: Addressing the Synthesis of an Arene That Adopts a Boat Configuration". Angewandte Chemie. 44 (25): 3899–3901. doi:10.1002/anie.200500466. PMID 15900530.
  3. Kostiuk, S. L.; Woodcock, T.; Dudin, L. F.; Howes, P. D.; Harrowven, D. C. (2011). "Unified Syntheses of Cavicularin and Riccardin C: Addressing the Synthesis of an Arene Adopting a Boat Configuration". Chemistry: A European Journal. 17 (39): 10906–10915. doi:10.1002/chem.201101550. PMID 21932232.
  4. Takiguchi, H.; Ohmori, K.; Suzuki, K. (2013). "Synthesis and Determination of the Absolute Configuration of Cavicularin by a Symmetrization/Asymmetrization Approach". Angew. Chem. Int. Ed. 52 (40): 10472–10476. doi:10.1002/anie.201304929. PMID 23956143.
  5. Zhao, Peng; Beaudry, Christopher M. (2013). "Total Synthesis of (±)-Cavicularin: Control of Pyrone Diels–Alder Regiochemistry Using Isomeric Vinyl Sulfones". Organic Letters. 15 (2): 402–405. doi:10.1021/ol303390a. PMID 23301524.
  6. Harada, Kenichi; Makino, Kosho; Shima, Naoki; Okuyama, Haruka; Esumi, Tomoyuki; Kubo, Miwa; Hioki, Hideaki; Asakawa, Yoshinori; Fukuyama, Yoshiyasu (2013). "Total synthesis of riccardin C and (±)-cavicularin via Pd-catalyzed Ar–Ar cross couplings". Tetrahedron. 69 (34): 6959–6968. doi:10.1016/j.tet.2013.06.064.
Dihydrostilbenoids and their glycosides
Dihydrostilbenoids
Oligomeric forms
Phenanthrenoids and their glycosides (molecules with a C6-C2-C6 backbone)
Phenanthrols
polyhydroxylated phenanthrenes
9,10-dihydrophenanthrene derivatives
glycosides
Phenanthrene glycosides
9,10-dihydrophenanthrene glycoside
dimeric phenanthrenes
Cyclic bibenzyl-dihydrophenanthrene derivative
Categories: