Cell-based models are mathematical models that represent biological cells as discrete entities. Within the field of computational biology they are often simply called agent-based models of which they are a specific application and they are used for simulating the biomechanics of multicellular structures such as tissues. to study the influence of these behaviors on how tissues are organised in time and space. Their main advantage is the easy integration of cell level processes such as cell division, intracellular processes and single-cell variability within a cell population.
Continuum-based models (PDE-based) models have also been developed – in particular, for cardiomyocytes and neurons. These represent the cells through explicit geometries and take into account spatial distributions of both intracellular and extracellular processes. They capture, depending on the research question and areas, ranges from a few to many thousand cells. In particular, the framework for electrophysiological models of cardiac cells is well-developed and made highly efficient using high-performance computing.
Model types
Cell-based models can be divided into on- and off-lattice models.
On-lattice
On-lattice models such as cellular automata or cellular potts restrict the spatial arrangement of the cells to a fixed grid. The mechanical interactions are then carried out according to literature-based rules (cellular automata) or by minimizing the total energy of the system (cellular potts), resulting in cells being displaced from one grid point to another.
Off-lattice
Off-lattice models allow for continuous movement of cells in space and evolve the system in time according to force laws governing the mechanical interactions between the individual cells. Examples of off-lattice models are center-based models, vertex-based models, models based on the immersed boundary method and the subcellular element method. They differ mainly in the level of detail with which they represent the cell shape. As a consequence they vary in their ability to capture different biological mechanisms, the effort needed to extend them from two- to three-dimensional models and also in their computational cost.
The simplest off-lattice model, the center-based model, depicts cells as spheres and models their mechanical interactions using pairwise potentials. It is easily extended to a large number of cells in both 2D and 3D.
Vertex
Vertex-based models are a subset of off-lattice models. They track the cell membrane as a set of polygonal points and update the position of each vertex according to tensions in the cell membrane resulting from cell-cell adhesion forces and cell elasticity. They are more difficult to implement and also more costly to run. As cells move past one another during a simulation, regular updates of the polygonal edge connections are necessary.
Applications
Since they account for individual behavior at the cell level such as cell proliferation, cell migration or apoptosis, cell-based models are a useful tool to study the influence of these behaviors on how tissues are organised in time and space. Due in part to the increase in computational power, they have arisen as an alternative to continuum mechanics models which treat tissues as viscoelastic materials by averaging over single cells.
Cell-based mechanics models are often coupled to models describing intracellular dynamics, such as an ODE representation of a relevant gene regulatory network. It is also common to connect them to a PDE describing the diffusion of a chemical signaling molecule through the extracellular matrix, in order to account for cell-cell communication. As such, cell-based models have been used to study processes ranging from embryogenesis over epithelial morphogenesis to tumour growth and intestinal crypt dynamics
Simulation frameworks
There exist several software packages implementing cell-based models, e.g.
Name | Model | dims | Openly available source code | Installation instructions | Usage documentation | Language | Speedup |
---|---|---|---|---|---|---|---|
ACAM | Off-lattice, ODE solvers | 2D | Yes | Yes | Python | ||
Agents.jl | Center/agent-based | 2D,3D | Yes | Yes | Julia | Distributed.jl | |
Artistoo | Cellular Potts, Cellular Automaton | 2D, (3D) | https://github.com/ingewortel/artistoo | Yes | Yes | JavaScript | |
Biocellion | Center/agent-based | No | Yes | Yes | C++ | ||
cellular_raza | Off-lattice, Allows for Generic Implementations | 1D, 2D, 3D | github.com/jonaspleyer/cellular_raza | Yes | Yes | Rust | |
CBMOS | Center/agent-based | Python | GPU | ||||
CellularPotts.jl | Cellular Potts, agent-based | 2D,3D | https://github.com/RobertGregg/CellularPotts.jl | not ready for usage | Julia | ||
Chaste | Center/agent-based, on-/off-lattice, cellular automata, vertex-based, immersed boundary | 2D, 3D | https://github.com/Chaste/Chaste | Yes | Yes | C++ | |
CompuCell3D | Cellular Potts, PDE solvers, cell type automata | 3D | https://github.com/CompuCell3D/CompuCell3D | Yes | Yes | C++, Python | OpenMP |
EdgeBased | Off-lattice, ODE solvers | 2D | https://github.com/luckyphill/EdgeBased | Yes | Yes | Matlab | |
EPISIM | Center/agent-based | 2D, 3D | Java | ||||
IAS (Interacting Active Surfaces) | FEM, ODE solvers | 3D | https://github.com/torressancheza/ias | Yes | No | C++ | MPI, OpenMP |
IBCell | Immersed Boundary | 2D | http://rejniak.net/RejniakLab/LabsTools.html | Yes | Yes | Matlab | |
LBIBCell | Lattice-Boltzmann, Immersed Boundary | 2D | https://tanakas.bitbucket.io/lbibcell/ | Yes | Yes | C++ | OpenMP |
MecaGen | Center/agent-based | 3D | https://github.com/juliendelile/MECAGEN | Yes | Yes | C++ | CUDA, GPU |
Minimal Cell | ODE solvers, stochastic PDE solvers | 3D | https://github.com/Luthey-Schulten-Lab/Lattice_Microbeshttps://github.com/Luthey-Schulten-Lab/Minimal_Cell | Yes | Yes | Python | CUDA, GPU |
Morpheus | Cellular Potts, ODE solvers, PDE solvers | 2D, 3D | https://morpheus.gitlab.io/ | Yes | Yes | C++ | |
NetLogo | Lattice gas cellular automata | 2D, (3D) | https://github.com/NetLogo/NetLogo | Scala, Java | |||
PhysiCell | Center/agent-based, ODE | 3D | https://github.com/MathCancer/PhysiCell | Yes | Yes | C++ | OpenMP |
TiSim (formerly CellSys) | Center/agent-based, off-lattice, ODE solvers | 2D, 3D | in preparation | ||||
Timothy | Center/agent-based | 3D | No | No | C | MPI, OpenMP | |
URDME - DLCM workflow | FEM, FVM | 2D,3D | https://github.com/URDME/urdme | Yes | Yes | Matlab, C | |
VirtualLeaf (2021) | Off-lattice | 2D | https://github.com/rmerks/VirtualLeaf2021 | Yes | Yes | C++ | |
yalla | Center/agent-based | 3D | https://github.com/germannp/yalla | CUDA, GPU | |||
VCell (Virtual Cell) | ODE solvers, PDE solvers, stochastic PDE solvers | 3D | https://github.com/virtualcell/vcell | Yes | Yes | Java, C++, Perl | |
Tyssue | Vertex-based | 2D, 3D | https://github.com/DamCB/tyssue | Yes | Yes | Python | |
4DFUCCI | Center/agent-based | 3D | https://github.com/ProfMJSimpson/4DFUCCI | Yes | Yes | Matlab, C, Python |
References
- ^ Metzcar J, Wang Y, Heiland R, Macklin P (February 2019). "A Review of Cell-Based Computational Modeling in Cancer Biology". JCO Clinical Cancer Informatics. 3 (3): 1–13. doi:10.1200/CCI.18.00069. PMC 6584763. PMID 30715927.
- ^ Van Liedekerke P, Palm MM, Jagiella N, Drasdo D (1 December 2015). "Simulating tissue mechanics with agent-based models: concepts, perspectives and some novel results". Computational Particle Mechanics. 2 (4): 401–444. Bibcode:2015CPM.....2..401V. doi:10.1007/s40571-015-0082-3.
- Aslak Tveito; Kent-Andre Mardal; Marie E. Rognes, eds. (2021). Modeling Excitable Tissue. Simula SpringerBriefs on Computing. Vol. 7. Springer. doi:10.1007/978-3-030-61157-6. ISBN 978-3-030-61156-9. S2CID 228872673.
- Peirce SM, Van Gieson EJ, Skalak TC (April 2004). "Multicellular simulation predicts microvascular patterning and in silico tissue assembly". FASEB Journal. 18 (6): 731–733. doi:10.1096/fj.03-0933fje. PMID 14766791. S2CID 11107214.
- Graner F, Glazier JA (September 1992). "Simulation of biological cell sorting using a two-dimensional extended Potts model". Physical Review Letters. 69 (13): 2013–2016. Bibcode:1992PhRvL..69.2013G. doi:10.1103/PhysRevLett.69.2013. PMID 10046374.
- Osborne JM, Fletcher AG, Pitt-Francis JM, Maini PK, Gavaghan DJ (February 2017). Nie Q (ed.). "Comparing individual-based approaches to modelling the self-organization of multicellular tissues". PLOS Computational Biology. 13 (2): e1005387. Bibcode:2017PLSCB..13E5387O. doi:10.1371/journal.pcbi.1005387. PMC 5330541. PMID 28192427.
- Rejniak KA (July 2007). "An immersed boundary framework for modelling the growth of individual cells: an application to the early tumour development". Journal of Theoretical Biology. 247 (1): 186–204. Bibcode:2007JThBi.247..186R. doi:10.1016/j.jtbi.2007.02.019. PMID 17416390.
- Newman TJ (July 2005). "Modeling Multicellular Structures Using the Subcellular Element Model". Single-Cell-Based Models in Biology and Medicine. Mathematics and Biosciences in Interaction. Vol. 2. pp. 613–24. doi:10.1007/978-3-7643-8123-3_10. ISBN 978-3-7643-8101-1. PMID 20369943.
{{cite book}}
:|journal=
ignored (help) - Osborne JM, Fletcher AG, Pitt-Francis JM, Maini PK, Gavaghan DJ (February 2017). "Comparing individual-based approaches to modelling the self-organization of multicellular tissues". PLOS Computational Biology. 13 (2): e1005387. Bibcode:2017PLSCB..13E5387O. doi:10.1371/journal.pcbi.1005387. PMC 5330541. PMID 28192427.
- Meineke FA, Potten CS, Loeffler M (August 2001). "Cell migration and organization in the intestinal crypt using a lattice-free model". Cell Proliferation. 34 (4): 253–266. doi:10.1046/j.0960-7722.2001.00216.x. PMC 6495866. PMID 11529883.
- Drasdo D, Höhme S (July 2005). "A single-cell-based model of tumor growth in vitro: monolayers and spheroids". Physical Biology. 2 (3): 133–147. Bibcode:2005PhBio...2..133D. doi:10.1088/1478-3975/2/3/001. PMID 16224119. S2CID 24191020.
- Galle J, Aust G, Schaller G, Beyer T, Drasdo D (July 2006). "Individual cell-based models of the spatial-temporal organization of multicellular systems--achievements and limitations". Cytometry. Part A. 69 (7): 704–710. doi:10.1002/cyto.a.20287. PMID 16807896.
- Fletcher AG, Osterfield M, Baker RE, Shvartsman SY (June 2014). "Vertex models of epithelial morphogenesis". Biophysical Journal. 106 (11): 2291–2304. Bibcode:2014BpJ...106.2291F. doi:10.1016/j.bpj.2013.11.4498. PMC 4052277. PMID 24896108.
- Fletcher AG, Osborne JM, Maini PK, Gavaghan DJ (November 2013). "Implementing vertex dynamics models of cell populations in biology within a consistent computational framework". Progress in Biophysics and Molecular Biology. 113 (2): 299–326. doi:10.1016/j.pbiomolbio.2013.09.003. PMID 24120733.
- Rodriguez EK, Hoger A, McCulloch AD (April 1994). "Stress-dependent finite growth in soft elastic tissues". Journal of Biomechanics. 27 (4): 455–467. doi:10.1016/0021-9290(94)90021-3. PMID 8188726.
- Tosenberger A, Gonze D, Bessonnard S, Cohen-Tannoudji M, Chazaud C, Dupont G (9 June 2017). "A multiscale model of early cell lineage specification including cell division". npj Systems Biology and Applications. 3 (1): 16. doi:10.1038/s41540-017-0017-0. PMC 5466652. PMID 28649443.
- Fletcher AG, Cooper F, Baker RE (May 2017). "Mechanocellular models of epithelial morphogenesis". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 372 (1720): 20150519. doi:10.1098/rstb.2015.0519. PMC 5379025. PMID 28348253.
- Drasdo D, Dormann S, Hoehme S, Deutsch A (2004). "Cell-Based Models of Avascular Tumor Growth". In Deutsch A, Howard J, Falcke M, Zimmermann W (eds.). Function and Regulation of Cellular Systems. pp. 367–378. doi:10.1007/978-3-0348-7895-1_37. ISBN 978-3-0348-9614-6.
- De Matteis G, Graudenzi A, Antoniotti M (June 2013). "A review of spatial computational models for multi-cellular systems, with regard to intestinal crypts and colorectal cancer development". Journal of Mathematical Biology. 66 (7): 1409–1462. doi:10.1007/s00285-012-0539-4. PMID 22565629. S2CID 32661526.
- Nestor-Bergmann A, Blanchard GB, Hervieux N, Fletcher AG, Étienne J, Sanson B (January 2022). "Adhesion-regulated junction slippage controls cell intercalation dynamics in an Apposed-Cortex Adhesion Model". PLOS Computational Biology. 18 (1): e1009812. Bibcode:2022PLSCB..18E9812N. doi:10.1371/journal.pcbi.1009812. PMC 8887740. PMID 35089922. S2CID 246387965.
- Nestor-Bergmann A, Blanchard GB, Hervieux N, Fletcher AG, Étienne J, Sanson B (2021). "ACAM - Apposed Cortex Adhesion Model". doi:10.1101/2021.04.11.439313. S2CID 233246026 – via Zenodo.
{{cite journal}}
: Cite journal requires|journal=
(help) - Datseris G, Vahdati AR, DuBois TC (2022-01-05). "Agents.jl: a performant and feature-full agent-based modeling software of minimal code complexity". Simulation: 003754972110688. arXiv:2101.10072. doi:10.1177/00375497211068820. ISSN 0037-5497. S2CID 231698977.
- "JuliaDynamics" – via GitHub.
- Wortel, Inge MN; Textor, Johannes (2021-04-09). Walczak, Aleksandra M; Buttenschoen, Andreas; Macklin, Paul (eds.). "Artistoo, a library to build, share, and explore simulations of cells and tissues in the web browser". eLife. 10: e61288. doi:10.7554/eLife.61288. ISSN 2050-084X. PMC 8143789. PMID 33835022.
- Kang S, Kahan S, McDermott J, Flann N, Shmulevich I (November 2014). "Biocellion: accelerating computer simulation of multicellular biological system models". Bioinformatics. 30 (21): 3101–3108. doi:10.1093/bioinformatics/btu498. PMC 4609016. PMID 25064572.
- "biocellion". biocellion. Retrieved 2022-04-05.
- Mathias S, Coulier A, Hellander A (January 2022). "CBMOS: a GPU-enabled Python framework for the numerical study of center-based models". BMC Bioinformatics. 23 (1): 55. doi:10.1186/s12859-022-04575-4. PMC 8805507. PMID 35100968.
- "JuliaDynamics" – via GitHub.
- Pitt-Francis J, Bernabeu MO, Cooper J, Garny A, Momtahan L, Osborne J, et al. (September 2008). "Chaste: using agile programming techniques to develop computational biology software". Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences. 366 (1878): 3111–3136. doi:10.1016/j.cpc.2009.07.019. PMID 18565813. Retrieved 2019-02-01.
- Mirams GR, Arthurs CJ, Bernabeu MO, Bordas R, Cooper J, Corrias A, et al. (14 March 2013). "Chaste: an open source C++ library for computational physiology and biology". PLOS Computational Biology. 9 (3): e1002970. Bibcode:2013PLSCB...9E2970M. doi:10.1371/journal.pcbi.1002970. PMC 3597547. PMID 23516352.
- Swat MH, Thomas GL, Belmonte JM, Shirinifard A, Hmeljak D, Glazier JA (1 January 2012). "Multi-Scale Modeling of Tissues Using CompuCell3D". Computational Methods in Cell Biology. Vol. 110. pp. 325–66. doi:10.1016/B978-0-12-388403-9.00013-8. ISBN 9780123884039. PMC 3612985. PMID 22482955.
- Brown PJ, Green JE, Binder BJ, Osborne JM (November 2021). "A rigid body framework for multi-cellular modelling". Nature Computational Science. 1 (11): 754–766. bioRxiv 10.1101/2021.02.10.430170. doi:10.1038/s43588-021-00154-4. PMID 38217146. S2CID 231939320.
- Sütterlin T, Huber S, Dickhaus H, Grabe N (August 2009). "Modeling multi-cellular behavior in epidermal tissue homeostasis via finite state machines in multi-agent systems". Bioinformatics. 25 (16): 2057–2063. doi:10.1093/bioinformatics/btp361. PMID 19535533.
- Torres-Sánchez A, Winter MK, Salbreux G (2022-03-22). "Interacting active surfaces: a model for three-dimensional cell aggregates". bioRxiv. 18 (12): 2022.03.21.484343. doi:10.1101/2022.03.21.484343. PMC 9803321. PMID 36525467. S2CID 247631653.
- Tanaka S, Sichau D, Iber D (July 2015). "LBIBCell: a cell-based simulation environment for morphogenetic problems". Bioinformatics. 31 (14): 2340–2347. arXiv:1503.06726. doi:10.1093/bioinformatics/btv147. PMID 25770313. S2CID 16749503.
- Delile J, Herrmann M, Peyriéras N, Doursat R (January 2017). "A cell-based computational model of early embryogenesis coupling mechanical behaviour and gene regulation". Nature Communications. 8: 13929. Bibcode:2017NatCo...813929D. doi:10.1038/ncomms13929. PMC 5264012. PMID 28112150.
- Thornburg ZR, Bianchi DM, Brier TA, Gilbert BR, Earnest TM, Melo MC, et al. (January 2022). "Fundamental behaviors emerge from simulations of a living minimal cell". Cell. 185 (2): 345–360.e28. doi:10.1016/j.cell.2021.12.025. PMC 9985924. PMID 35063075. S2CID 246065847.
- Starruß J, de Back W, Brusch L, Deutsch A (May 2014). "Morpheus: a user-friendly modeling environment for multiscale and multicellular systems biology". Bioinformatics. 30 (9): 1331–1332. doi:10.1093/bioinformatics/btt772. PMC 3998129. PMID 24443380.
- Ghaffarizadeh A, Heiland R, Friedman SH, Mumenthaler SM, Macklin P (February 2018). "PhysiCell: An open source physics-based cell simulator for 3-D multicellular systems". PLOS Computational Biology. 14 (2): e1005991. Bibcode:2018PLSCB..14E5991G. doi:10.1371/journal.pcbi.1005991. PMC 5841829. PMID 29474446.
- Cytowski M, Szymanska Z (September 2014). "Large-Scale Parallel Simulations of 3D Cell Colony Dynamics". Computing in Science & Engineering. 16 (5): 86–95. Bibcode:2014CSE....16e..86C. doi:10.1109/MCSE.2014.2. ISSN 1558-366X. S2CID 427712.
- Engblom S, Wilson DB, Baker RE (August 2018). "Scalable population-level modelling of biological cells incorporating mechanics and kinetics in continuous time". Royal Society Open Science. 5 (8): 180379. arXiv:1706.03375. Bibcode:2018RSOS....580379E. doi:10.1098/rsos.180379. PMC 6124129. PMID 30225024.
- "URDME". URDME. Retrieved 2022-04-05.
- Antonovici CC, Peerdeman GY, Wolff HB, Merks RM (2022). "Modeling Plant Tissue Development Using VirtualLeaf". In Lucas M (ed.). Plant Systems Biology. Methods in Molecular Biology. Vol. 2395. New York, NY: Springer. pp. 165–198. doi:10.1007/978-1-0716-1816-5_9. hdl:1887/3479570. ISBN 978-1-0716-1816-5. PMID 34822154. S2CID 244668621.
- Germann P, Marin-Riera M, Sharpe J (March 2019). "ya||a: GPU-Powered Spheroid Models for Mesenchyme and Epithelium". Cell Systems. 8 (3): 261–266.e3. doi:10.1016/j.cels.2019.02.007. hdl:10230/42284. PMID 30904379. S2CID 85497718.
- Theis S, Suzanne M, Gay G (2021-06-07). "Tyssue: an epithelium simulation library". Journal of Open Source Software. 6 (62): 2973. Bibcode:2021JOSS....6.2973T. doi:10.21105/joss.02973. ISSN 2475-9066. S2CID 235965728.