In physics and mathematics, the Clebsch representation of an arbitrary three-dimensional vector field is:
where the scalar fields and are known as Clebsch potentials or Monge potentials, named after Alfred Clebsch (1833–1872) and Gaspard Monge (1746–1818), and is the gradient operator.
Background
In fluid dynamics and plasma physics, the Clebsch representation provides a means to overcome the difficulties to describe an inviscid flow with non-zero vorticity – in the Eulerian reference frame – using Lagrangian mechanics and Hamiltonian mechanics. At the critical point of such functionals the result is the Euler equations, a set of equations describing the fluid flow. Note that the mentioned difficulties do not arise when describing the flow through a variational principle in the Lagrangian reference frame. In case of surface gravity waves, the Clebsch representation leads to a rotational-flow form of Luke's variational principle.
For the Clebsch representation to be possible, the vector field has (locally) to be bounded, continuous and sufficiently smooth. For global applicability has to decay fast enough towards infinity. The Clebsch decomposition is not unique, and (two) additional constraints are necessary to uniquely define the Clebsch potentials. Since is in general not solenoidal, the Clebsch representation does not in general satisfy the Helmholtz decomposition.
Vorticity
The vorticity is equal to
with the last step due to the vector calculus identity So the vorticity is perpendicular to both and while further the vorticity does not depend on
Notes
- ^ Lamb (1993, pp. 248–249)
- ^ Serrin (1959, pp. 169–171)
- Benjamin (1984)
- Aris (1962, pp. 70–72)
- Clebsch (1859)
- Bateman (1929)
- Seliger & Whitham (1968)
- Luke (1967)
- Wesseling (2001, p. 7)
- Wu, Ma & Zhou (2007, p. 43)
References
- Aris, R. (1962), Vectors, tensors, and the basic equations of fluid mechanics, Prentice-Hall, OCLC 299650765
- Bateman, H. (1929), "Notes on a differential equation which occurs in the two-dimensional motion of a compressible fluid and the associated variational problems", Proceedings of the Royal Society of London A, 125 (799): 598–618, Bibcode:1929RSPSA.125..598B, doi:10.1098/rspa.1929.0189
- Benjamin, T. Brooke (1984), "Impulse, flow force and variational principles", IMA Journal of Applied Mathematics, 32 (1–3): 3–68, Bibcode:1984JApMa..32....3B, doi:10.1093/imamat/32.1-3.3
- Clebsch, A. (1859), "Ueber die Integration der hydrodynamischen Gleichungen", Journal für die Reine und Angewandte Mathematik, 1859 (56): 1–10, doi:10.1515/crll.1859.56.1, S2CID 122730522
- Lamb, H. (1993), Hydrodynamics (6th ed.), Dover, ISBN 978-0-486-60256-1
- Luke, J.C. (1967), "A variational principle for a fluid with a free surface", Journal of Fluid Mechanics, 27 (2): 395–397, Bibcode:1967JFM....27..395L, doi:10.1017/S0022112067000412, S2CID 123409273
- Morrison, P.J. (2006). "Hamiltonian Fluid Dynamics" (PDF). Hamiltonian fluid mechanics. Encyclopedia of Mathematical Physics. Vol. 2. Elsevier. pp. 593–600. doi:10.1016/B0-12-512666-2/00246-7. ISBN 9780125126663.
- Rund, H. (1976), "Generalized Clebsch representations on manifolds", Topics in differential geometry, Academic Press, pp. 111–133, ISBN 978-0-12-602850-8
- Salmon, R. (1988), "Hamiltonian fluid mechanics", Annual Review of Fluid Mechanics, 20: 225–256, Bibcode:1988AnRFM..20..225S, doi:10.1146/annurev.fl.20.010188.001301
- Seliger, R.L.; Whitham, G.B. (1968), "Variational principles in continuum mechanics", Proceedings of the Royal Society of London A, 305 (1440): 1–25, Bibcode:1968RSPSA.305....1S, doi:10.1098/rspa.1968.0103, S2CID 119565234
- Serrin, J. (1959), "Mathematical principles of classical fluid mechanics", in Flügge, S.; Truesdell, C. (eds.), Strömungsmechanik I [Fluid Dynamics I], Encyclopedia of Physics / Handbuch der Physik, vol. VIII/1, pp. 125–263, Bibcode:1959HDP.....8..125S, doi:10.1007/978-3-642-45914-6_2, ISBN 978-3-642-45916-0, MR 0108116, Zbl 0102.40503
- Wesseling, P. (2001), Principles of computational fluid dynamics, Springer, ISBN 978-3-540-67853-3
- Wu, J.-Z.; Ma, H.-Y.; Zhou, M.-D. (2007), Vorticity and vortex dynamics, Springer, ISBN 978-3-540-29027-8