A common year starting on Saturday is any non-leap year (i.e. a year with 365 days) that begins on Saturday , 1 January, and ends on Saturday, 31 December. Its dominical letter hence is B . The most recent year of such kind was 2022 and the next one will be 2033 in the Gregorian calendar or, likewise, 2023 and 2034 in the obsolete Julian calendar . See below for more .
Any common year that starts on Saturday has only one Friday the 13th : the only one in this common year occurs in May .
From July of the year that precedes this year until September in this type of year is the longest period (14 months) that occurs without a Tuesday the 13th .
Calendars
Calendar for any common year starting on Saturday, presented as common in many English-speaking areas
January
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
February
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
March
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
April
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
May
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
June
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
July
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
August
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
September
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
October
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
November
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
December
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
ISO 8601 -conformant calendar with week numbers for any common year starting on Saturday (dominical letter B) preceded by a common year starting on Friday (dominical letter C)
January
Wk
Mo
Tu
We
Th
Fr
Sa
Su
52
01
02
01
03
04
05
06
07
08
09
02
10
11
12
13
14
15
16
03
17
18
19
20
21
22
23
04
24
25
26
27
28
29
30
05
31
February
Wk
Mo
Tu
We
Th
Fr
Sa
Su
05
01
02
03
04
05
06
06
07
08
09
10
11
12
13
07
14
15
16
17
18
19
20
08
21
22
23
24
25
26
27
09
28
March
Wk
Mo
Tu
We
Th
Fr
Sa
Su
09
01
02
03
04
05
06
10
07
08
09
10
11
12
13
11
14
15
16
17
18
19
20
12
21
22
23
24
25
26
27
13
28
29
30
31
April
Wk
Mo
Tu
We
Th
Fr
Sa
Su
13
01
02
03
14
04
05
06
07
08
09
10
15
11
12
13
14
15
16
17
16
18
19
20
21
22
23
24
17
25
26
27
28
29
30
May
Wk
Mo
Tu
We
Th
Fr
Sa
Su
17
01
18
02
03
04
05
06
07
08
19
09
10
11
12
13
14
15
20
16
17
18
19
20
21
22
21
23
24
25
26
27
28
29
22
30
31
June
Wk
Mo
Tu
We
Th
Fr
Sa
Su
22
01
02
03
04
05
23
06
07
08
09
10
11
12
24
13
14
15
16
17
18
19
25
20
21
22
23
24
25
26
26
27
28
29
30
July
Wk
Mo
Tu
We
Th
Fr
Sa
Su
26
01
02
03
27
04
05
06
07
08
09
10
28
11
12
13
14
15
16
17
29
18
19
20
21
22
23
24
30
25
26
27
28
29
30
31
August
Wk
Mo
Tu
We
Th
Fr
Sa
Su
31
01
02
03
04
05
06
07
32
08
09
10
11
12
13
14
33
15
16
17
18
19
20
21
34
22
23
24
25
26
27
28
35
29
30
31
September
Wk
Mo
Tu
We
Th
Fr
Sa
Su
35
01
02
03
04
36
05
06
07
08
09
10
11
37
12
13
14
15
16
17
18
38
19
20
21
22
23
24
25
39
26
27
28
29
30
October
Wk
Mo
Tu
We
Th
Fr
Sa
Su
39
01
02
40
03
04
05
06
07
08
09
41
10
11
12
13
14
15
16
42
17
18
19
20
21
22
23
43
24
25
26
27
28
29
30
44
31
November
Wk
Mo
Tu
We
Th
Fr
Sa
Su
44
01
02
03
04
05
06
45
07
08
09
10
11
12
13
46
14
15
16
17
18
19
20
47
21
22
23
24
25
26
27
48
28
29
30
December
Wk
Mo
Tu
We
Th
Fr
Sa
Su
48
01
02
03
04
49
05
06
07
08
09
10
11
50
12
13
14
15
16
17
18
51
19
20
21
22
23
24
25
52
26
27
28
29
30
31
ISO 8601 -conformant calendar with week numbers for any common year starting on Saturday (dominical letter B) preceded by a leap year starting on Thursday (dominical letter DC)
January
Wk
Mo
Tu
We
Th
Fr
Sa
Su
53
01
02
01
03
04
05
06
07
08
09
02
10
11
12
13
14
15
16
03
17
18
19
20
21
22
23
04
24
25
26
27
28
29
30
05
31
February
Wk
Mo
Tu
We
Th
Fr
Sa
Su
05
01
02
03
04
05
06
06
07
08
09
10
11
12
13
07
14
15
16
17
18
19
20
08
21
22
23
24
25
26
27
09
28
March
Wk
Mo
Tu
We
Th
Fr
Sa
Su
09
01
02
03
04
05
06
10
07
08
09
10
11
12
13
11
14
15
16
17
18
19
20
12
21
22
23
24
25
26
27
13
28
29
30
31
April
Wk
Mo
Tu
We
Th
Fr
Sa
Su
13
01
02
03
14
04
05
06
07
08
09
10
15
11
12
13
14
15
16
17
16
18
19
20
21
22
23
24
17
25
26
27
28
29
30
May
Wk
Mo
Tu
We
Th
Fr
Sa
Su
17
01
18
02
03
04
05
06
07
08
19
09
10
11
12
13
14
15
20
16
17
18
19
20
21
22
21
23
24
25
26
27
28
29
22
30
31
June
Wk
Mo
Tu
We
Th
Fr
Sa
Su
22
01
02
03
04
05
23
06
07
08
09
10
11
12
24
13
14
15
16
17
18
19
25
20
21
22
23
24
25
26
26
27
28
29
30
July
Wk
Mo
Tu
We
Th
Fr
Sa
Su
26
01
02
03
27
04
05
06
07
08
09
10
28
11
12
13
14
15
16
17
29
18
19
20
21
22
23
24
30
25
26
27
28
29
30
31
August
Wk
Mo
Tu
We
Th
Fr
Sa
Su
31
01
02
03
04
05
06
07
32
08
09
10
11
12
13
14
33
15
16
17
18
19
20
21
34
22
23
24
25
26
27
28
35
29
30
31
September
Wk
Mo
Tu
We
Th
Fr
Sa
Su
35
01
02
03
04
36
05
06
07
08
09
10
11
37
12
13
14
15
16
17
18
38
19
20
21
22
23
24
25
39
26
27
28
29
30
October
Wk
Mo
Tu
We
Th
Fr
Sa
Su
39
01
02
40
03
04
05
06
07
08
09
41
10
11
12
13
14
15
16
42
17
18
19
20
21
22
23
43
24
25
26
27
28
29
30
44
31
November
Wk
Mo
Tu
We
Th
Fr
Sa
Su
44
01
02
03
04
05
06
45
07
08
09
10
11
12
13
46
14
15
16
17
18
19
20
47
21
22
23
24
25
26
27
48
28
29
30
December
Wk
Mo
Tu
We
Th
Fr
Sa
Su
48
01
02
03
04
49
05
06
07
08
09
10
11
50
12
13
14
15
16
17
18
51
19
20
21
22
23
24
25
52
26
27
28
29
30
31
Applicable years
Gregorian Calendar
In the (currently used) Gregorian calendar, alongside Sunday , Monday , Wednesday or Friday , the fourteen types of year (seven common, seven leap) repeat in a 400-year cycle (20871 weeks). Forty-three common years per cycle or exactly 10.75% start on a Saturday. The 28-year sub-cycle will break at a century year which is not divisible by 400 (e.g. it broke at the year 1900 but not at the year 2000).
400-year cycle
0–99
5
11
22
33
39
50
61
67
78
89
95
100–199
101
107
118
129
135
146
157
163
174
185
191
200–299
203
214
225
231
242
253
259
270
281
287
298
300–399
310
321
327
338
349
355
366
377
383
394
Julian Calendar
In the now-obsolete Julian calendar, the fourteen types of year (seven common, seven leap) repeat in a 28-year cycle (1461 weeks). A leap year has two adjoining dominical letters, (one for January and February and the other for March to December in the Church of England, as 29 February has no letter). Each of the seven two-letter sequences occurs once within a cycle, and every common letter thrice.
As the Julian calendar repeats after 28 years that means it will also repeat after 700 years, i.e. 25 cycles. The year's position in the cycle is given by the formula (((year + 8) mod 28) + 1). Years 10, 16 and 27 of the cycle are common years beginning on Saturday. 2017 is year 10 of the cycle. Approximately 10.71% of all years are common years beginning on Saturday.
Julian common years starting on Saturday
Decade
1st
2nd
3rd
4th
5th
6th
7th
8th
9th
10th
15th century
1401
1407
1418
1429
1435
1446
1457
1463
1474
1485
1491
16th century
1502
1513
1519
1530
—
1541
1547
1558
1569
1575
1586
1597
17th century
1603
1614
1625
1631
1642
1653
1659
1670
—
1681
1687
1698
18th century
1709
1715
1726
1737
1743
1754
1765
1771
1782
1793
1799
19th century
1810
—
1821
1827
1838
1849
1855
1866
1877
1883
1894
20th century
1905
1911
1922
1933
1939
1950
—
1961
1967
1978
1989
1995
21st century
2006
2017
2023
2034
2045
2051
2062
2073
2079
2090
—
Holidays
International
Roman Catholic Solemnities
Australia and New Zealand
British Isles
Canada
United States
References
Robert van Gent (2017). "The Mathematics of the ISO 8601 Calendar" . Utrecht University, Department of Mathematics. Retrieved 20 July 2017.
Gregorian year types per leap cycle by Dominical letter (DL) and Doomsday (DD)
Year starts
Common years
Leap years
1 Jan
Count
Ratio
31 Dec
DL
DD
Count
Ratio
31 Dec
DL
DD
Count
Ratio
Sun
58
14.50 %
Sun
A
Tue
43
10.75 %
Mon
AG
Wed
15
03.75 %
Mon
56
14.00 %
Mon
G
Wed
43
10.75 %
Tue
GF
Thu
13
03.25 %
Tue
58
14.50 %
Tue
F
Thu
44
11.00 %
Wed
FE
Fri
14
03.50 %
Wed
57
14.25 %
Wed
E
Fri
43
10.75 %
Thu
ED
Sat
14
03.50 %
Thu
57
14.25 %
Thu
D
Sat
44
11.00 %
Fri
DC
Sun
13
03.25 %
Fri
58
14.50 %
Fri
C
Sun
43
10.75 %
Sat
CB
Mon
15
03.75 %
Sat
56
14.00 %
Sat
B
Mon
43
10.75 %
Sun
BA
Tue
13
03.25 %
∑
400
100.0 %
303
75.75 %
97
24.25 %
Source: Robert van Gent (2017). "The Mathematics of the ISO 8601 Calendar" . Utrecht University, Department of Mathematics. Retrieved 20 July 2017.
Categories :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑