Misplaced Pages

Comparison of ARM processors

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Comparison of Armv8-A processors)

This article needs additional citations for verification. Relevant discussion may be found on the talk page. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Comparison of ARM processors" – news · newspapers · books · scholar · JSTOR (June 2014) (Learn how and when to remove this message)

This is a comparison of ARM instruction set architecture application processor cores designed by ARM Holdings (ARM Cortex-A) and 3rd parties. It does not include ARM Cortex-R, ARM Cortex-M, or legacy ARM cores.

ARMv7-A

This is a table comparing 32-bit central processing units that implement the ARMv7-A (A means Application) instruction set architecture and mandatory or optional extensions of it, the last AArch32.

This list is incomplete; you can help by adding missing items. (February 2014)
Core Decode
width
Execution
ports
Pipeline
depth
Out-of-order execution FPU Pipelined
VFP
FPU
registers
NEON
(SIMD)
big.LITTLE
role
Virtualization Process
technology
L0
cache
L1
cache
L2
cache
Core
configurations
Speed
per
core
(DMIPS
/ MHz
)
ARM part number
(in the main ID register)
ARM Cortex-A5 1 8 No VFPv4 (optional) 16 × 64-bit 64-bit wide (optional) No No 40/28 nm 4–64 KiB / core 1, 2, 4 1.57 0xC05
ARM Cortex-A7 2 5 8 No VFPv4 Yes 16 × 64-bit 64-bit wide LITTLE Yes 40/28 nm 8–64 KiB / core up to 1 MiB (optional) 1, 2, 4, 8 1.9 0xC07
ARM Cortex-A8 2 2 13 No VFPv3 No 32 × 64-bit 64-bit wide No No 65/55/45 nm 32 KiB + 32 KiB 256 or 512 (typical) KiB 1 2.0 0xC08
ARM Cortex-A9 2 3 8–11 Yes VFPv3 (optional) Yes (16 or 32) × 64-bit 64-bit wide (optional) Companion Core No 65/45/40/32/28 nm 32 KiB + 32 KiB 1 MiB 1, 2, 4 2.5 0xC09
ARM Cortex-A12 2 11 Yes VFPv4 Yes 32 × 64-bit 128-bit wide No Yes 28 nm 32–64 KiB + 32 KiB 256 KiB, to 8 MiB 1, 2, 4 3.0 0xC0D
ARM Cortex-A15 3 8 15/17-25 Yes VFPv4 Yes 32 × 64-bit 128-bit wide big Yes 32/28/20 nm 32 KiB + 32 KiB per core up to 4 MiB per cluster, up to 8 MiB per chip 2, 4, 8 (4×2) 3.5 to 4.01 0xC0F
ARM Cortex-A17 2 11+ Yes VFPv4 Yes 32 × 64-bit 128-bit wide big Yes 28 nm 32 KiB + 32 KiB per core 256 KiB, up to 8 MiB up to 4 4.0 0xC0E
Qualcomm Scorpion 2 3 10 Yes (FXU&LSU only) VFPv3 Yes 128-bit wide No 65/45 nm 32 KiB + 32 KiB 256 KiB (single-core)
512 KiB (dual-core)
1, 2 2.1 0x00F
Qualcomm Krait 3 7 11 Yes VFPv4 Yes 128-bit wide No 28 nm 4 KiB + 4 KiB direct mapped 16 KiB + 16 KiB 4-way set associative 1 MiB 8-way set associative (dual-core) / 2 MiB (quad-core) 2, 4 3.3 (Krait 200)
3.39 (Krait 300)
3.39 (Krait 400)
3.51 (Krait 450)
0x04D

0x06F
Swift 3 5 12 Yes VFPv4 Yes 32 × 64-bit 128-bit wide No 32 nm 32 KiB + 32 KiB 1 MiB 2 3.5 ?
Core Decode
width
Execution
ports
Pipeline
depth
Out-of-order execution FPU Pipelined
VFP
FPU
registers
NEON
(SIMD)
big.LITTLE
role
Virtualization Process
technology
L0
cache
L1
cache
L2
cache
Core
configurations
Speed
per
core
(DMIPS
/ MHz
)
ARM part number
(in the main ID register)

ARMv8-A

This is a table of 64/32-bit central processing units that implement the ARMv8-A instruction set architecture and mandatory or optional extensions of it. Most chips support the 32-bit ARMv7-A for legacy applications. All chips of this type have a floating-point unit (FPU) that is better than the one in older ARMv7-A and NEON (SIMD) chips. Some of these chips have coprocessors also include cores from the older 32-bit architecture (ARMv7). Some of the chips are SoCs and can combine both ARM Cortex-A53 and ARM Cortex-A57, such as the Samsung Exynos 7 Octa.

This list is incomplete; you can help by adding missing items. (May 2014)
Company Core Released Revision Decode Pipeline
depth
Out-of-order
execution
Branch
prediction
big.LITTLE role Exec.
ports
SIMD Fab
(in nm)
Simult. MT L0 cache L1 cache
Instr + Data
(in KiB)
L2 cache L3 cache Core
configu-
rations
Speed per core (DMIPS/
MHz
)
Clock rate ARM part number (in the main ID register)
Have it Entries
ARM Cortex-A32 (32-bit) 2017 ARMv8.0-A
(only 32-bit)
2-wide 8 No 0 ? LITTLE ? ? 28 No No 8–64 + 8–64 0–1 MiB No 1–4+ 2.3 ? 0xD01
Cortex-A34 (64-bit) 2019 ARMv8.0-A
(only 64-bit)
2-wide 8 No 0 ? LITTLE ? ? ? No No 8–64 + 8–64 0–1 MiB No 1–4+ ? ? 0xD02
Cortex-A35 2017 ARMv8.0-A 2-wide 8 No 0 Yes LITTLE ? ? 28 / 16 /
14 / 10
No No 8–64 + 8–64 0 / 128 KiB–1 MiB No 1–4+ 1.7-1.85 ? 0xD04
Cortex-A53 2014 ARMv8.0-A 2-wide 8 No 0 Conditional+
Indirect branch
prediction
big/LITTLE 2 ? 28 / 20 /
16 / 14 / 10
No No 8–64 + 8–64 128 KiB–2 MiB No 1–4+ 2.24 ? 0xD03
Cortex-A55 2017 ARMv8.2-A 2-wide 8 No 0 big/LITTLE 2 ? 28 / 20 /
16 / 14 / 12 / 10 / 5
No No 16–64 + 16–64 0–256 KiB/core 0–4 MiB 1–8+ 2.65 ? 0xD05
Cortex-A57 2013 ARMv8.0-A 3-wide 15 Yes
3-wide dispatch
? ? big 8 ? 28 / 20 /
16 / 14
No No 48 + 32 0.5–2 MiB No 1–4+ 4.1-4.8 ? 0xD07
Cortex-A65 2019 ARMv8.2-A
(only 64-bit)
2-wide 10-12 Yes
4-wide dispatch
Two-level ? 9 ? SMT2 No 32–64 + 32–64 KiB 0, 64–256 KiB 0, 0.5–4 MiB 1-8 ? ? 0xD06
Cortex-A65AE 2019 ARMv8.2-A ? ? Yes Two-level ? 2 ? SMT2 No 32–64 + 32–64 KiB 64–256 KiB 0, 0.5–4 MiB 1–8 ? ? 0xD43
Cortex-A72 2015 ARMv8.0-A 3-wide 15 Yes
5-wide dispatch
Two-level big 8 28 / 16 No No 48 + 32 0.5–4 MiB No 1–4+ 4.7-6.3 ? 0xD08
Cortex-A73 2016 ARMv8.0-A 2-wide 11–12 Yes
4-wide dispatch
Two-level big 7 28 / 16 / 10 No No 64 + 32/64 1–8 MiB No 1–4+ 4.8–8.5 ? 0xD09
Cortex-A75 2017 ARMv8.2-A 3-wide 11–13 Yes
6-wide dispatch
Two-level big 8? 2*128b 28 / 16 / 10 No No 64 + 64 256–512 KiB/core 0–4 MiB 1–8+ 6.1–9.5 ? 0xD0A
Cortex-A76 2018 ARMv8.2-A 4-wide 11–13 Yes
8-wide dispatch
128 Two-level big 8 2*128b 10 / 7 No No 64 + 64 256–512 KiB/core 1–4 MiB 1–4 6.4 ? 0xD0B
Cortex-A76AE 2018 ARMv8.2-A ? ? Yes 128 Two-level big ? ? No No ? ? ? ? ? ? 0xD0E
Cortex-A77 2019 ARMv8.2-A 4-wide 11–13 Yes
10-wide dispatch
160 Two-level big 12 2*128b 7 No 1.5K entries 64 + 64 256–512 KiB/core 1–4 MiB 1–4 7.3 ? 0xD0D
Cortex-A78 2020 ARMv8.2-A 4-wide Yes 160 Yes big 13 2*128b No 1.5K entries 32/64 + 32/64 256–512 KiB/core 1–4 MiB 1–4 7.6-8.2 ? 0xD41
Cortex-X1 2020 ARMv8.2-A 5-wide ? Yes 224 Yes big 15 4*128b No 3K entries 64 + 64 up to 1 MiB up to 8 MiB custom 10-11 ? 0xD44
Apple Cyclone 2013 ARMv8.0-A 6-wide 16 Yes 192 Yes No 9 28 No No 64 + 64 1 MiB 4 MiB 2 ? 1.3–1.4 GHz
Typhoon 2014 ARMv8.0‑A 6-wide 16 Yes Yes No 9 20 No No 64 + 64 1 MiB 4 MiB 2, 3 (A8X) ? 1.1–1.5 GHz
Twister 2015 ARMv8.0‑A 6-wide 16 Yes Yes No 9 16 / 14 No No 64 + 64 3 MiB 4 MiB
No (A9X)
2 ? 1.85–2.26 GHz
Hurricane 2016 ARMv8.0‑A 6-wide 16 Yes "big" (In A10/A10X paired with "LITTLE" Zephyr
cores)
9 3*128b 16 (A10)
10 (A10X)
No No 64 + 64 3 MiB (A10)
8 MiB (A10X)
4 MiB (A10)
No (A10X)
2x Hurricane (A10)
3x Hurricane (A10X)
? 2.34–2.36 GHz
Zephyr ARMv8.0‑A 3-wide 12 Yes LITTLE 5 16 (A10)
10 (A10X)
No No 32 + 32 1 MiB 4 MiB (A10)
No (A10X)
2x Zephyr (A10)
3x Zephyr (A10X)
? 1.09–1.3 GHz
Monsoon 2017 ARMv8.2‑A 7-wide 16 Yes "big" (In Apple A11 paired with "LITTLE" Mistral
cores)
11 3*128b 10 No No 64 + 64 8 MiB No 2x Monsoon ? 2.39 GHz
Mistral ARMv8.2‑A 3-wide 12 Yes LITTLE 5 10 No No 32 + 32 1 MiB No Mistral ? 1.19 GHz
Vortex 2018 ARMv8.3‑A 7-wide 16 Yes "big" (In Apple A12/Apple A12X/Apple A12Z paired with "LITTLE" Tempest
cores)
11 3*128b 7 No No 128 + 128 8 MiB No 2x Vortex (A12)
4x Vortex (A12X/A12Z)
? 2.49 GHz
Tempest ARMv8.3‑A 3-wide 12 Yes LITTLE 5 7 No No 32 + 32 2 MiB No 4x Tempest ? 1.59 GHz
Lightning 2019 ARMv8.4‑A 8-wide 16 Yes 560 "big" (In Apple A13 paired with "LITTLE" Thunder
cores)
11 3*128b 7 No No 128 + 128 8 MiB No 2x Lightning ? 2.65 GHz
Thunder ARMv8.4‑A 3-wide 12 Yes LITTLE 5 7 No No 96 + 48 4 MiB No 4x Thunder ? 1.8 GHz
Firestorm 2020 ARMv8.4-A 8-wide Yes 630 "big" (In Apple A14 and Apple M1/M1 Pro/M1 Max/M1 Ultra paired with "LITTLE" Icestorm
cores)
14 4*128b 5 No 192 + 128 8 MiB (A14)
12 MiB (M1)
24 MiB (M1 Pro/M1 Max)
48 MiB (M1 Ultra)
No 2x Firestorm (A14)
4x Firestorm (M1)

6x or 8x Firestorm (M1 Pro)
8x Firestorm (M1 Max)
16x Firestorm (M1 Ultra)

? 3.0–3.23 GHz
Icestorm ARMv8.4-A 4-wide Yes 110 LITTLE 7 2*128b 5 No 128 + 64 4 MiB
8 MiB (M1 Ultra)
No 4x Icestorm (A14/M1)
2x Icestorm (M1 Pro/Max)
4x Icestorm (M1 Ultra)
? 1.82–2.06 GHz
Avalanche 2021 ARMv8.6‑A 8-wide Yes "big" (In Apple A15 and Apple M2/M2 Pro/M2 Max/M2 Ultra paired with "LITTLE" Blizzard
cores)
14 4*128b 5 No 192 + 128 12 MiB (A15)
16 MiB (M2)
32 MiB (M2 Pro/M2 Max)
64 MiB (M2 Ultra)
No 2x Avalanche (A15)
4x Avalanche (M2)
6x or 8x Avalanche (M2 Pro)

8x Avalanche (M2 Max)
16x Avalanche (M2 Ultra)

? 2.93–3.49 GHz
Blizzard ARMv8.6‑A 4-wide Yes LITTLE 8 2*128b 5 No 128 + 64 4 MiB
8 MiB (M2 Ultra)
No 4x Blizzard ? 2.02–2.42 GHz
Everest 2022 ARMv8.6‑A 8-wide Yes "big" (In Apple A16 paired with "LITTLE" Sawtooth
cores)
14 4*128b 5 No 192 + 128 16 MiB No 2x Everest ? 3.46 GHz
Sawtooth ARMv8.6‑A 4-wide Yes LITTLE 8 2*128b 5 No 128 + 64 4 MiB No 4x Sawtooth ? 2.02 GHz
Nvidia Denver 2014 ARMv8‑A 2-wide hardware
decoder, up to
7-wide variable-
length VLIW
micro-ops
13 Not if the hardware
decoder is in use.
Can be provided
by dynamic software
translation into VLIW.
Direct+
Indirect branch
prediction
No 7 28 No No 128 + 64 2 MiB No 2 ? ?
Denver 2 2016 ARMv8‑A ? 13 Not if the hardware
decoder is in use.
Can be provided
by dynamic software
translation into VLIW.
Direct+
Indirect branch
prediction
"Super" Nvidia's own implementation ? 16 No No 128 + 64 2 MiB No 2 ? ?
Carmel 2018 ARMv8.2‑A ? Direct+
Indirect branch
prediction
? 12 No No 128 + 64 2 MiB (4 MiB @ 8 cores) 2 (+ 8) 6.5-7.4 ?
Cavium ThunderX 2014 ARMv8-A 2-wide 9 Yes Two-level ? 28 No No 78 + 32 16 MiB No 8–16, 24–48 ? ?
ThunderX2
(ex. Broadcom Vulcan)
2018 ARMv8.1-A
4-wide
"4 μops"
? Yes Multi-level ? ? 16 SMT4 No 32 + 32
(data 8-way)
256 KiB
per core
1 MiB
per core
16–32 ? ?
Marvell ThunderX3 2020 ARMv8.3+ 8-wide ? Yes
4-wide dispatch
Multi-level ? 7 7 SMT4 ? 64 + 32 512 KiB
per core
90 MiB 60 ? ?
Applied

Micro

Helix 2014 ? ? ? ? ? ? ? 40 / 28 No No 32 + 32 (per core;
write-through
w/parity)
256 KiB shared
per core pair (with ECC)
1 MiB/core 2, 4, 8 ? ?
X-Gene 2013 ? 4-wide 15 Yes ? ? ? 40 No No 8 MiB 8 4.2 ?
X-Gene 2 2015 ? 4-wide 15 Yes ? ? ? 28 No No 8 MiB 8 4.2 ?
X-Gene 3 2017 ? ? ? ? ? ? ? 16 No No ? ? 32 MiB 32 ? ?
Qualcomm Kryo 2015 ARMv8-A ? ? Yes Two-level? "big" or "LITTLE"
Qualcomm's own similar implementation
? 14 No No 32+24 0.5–1 MiB 2+2 6.3 ?
Kryo 200 2016 ARMv8-A 2-wide 11–12 Yes
7-wide dispatch
Two-level big 7 14 / 11 / 10 / 6 No No 64 + 32/64? 512 KiB/Gold Core No 4 ? 1.8–2.45 GHz
2-wide 8 No 0 Conditional+
Indirect branch
prediction
LITTLE 2 8–64? + 8–64? 256 KiB/Silver Core 4 ? 1.8–1.9 GHz
Kryo 300 2017 ARMv8.2-A 3-wide 11–13 Yes
8-wide dispatch
Two-level big 8 10 No No 64+64 256 KiB/Gold Core 2 MiB 2, 4 ? 2.0–2.95 GHz
2-wide 8 No 0 Conditional+
Indirect branch
prediction
LITTLE 28 16–64? + 16–64? 128 KiB/Silver 4, 6 ? 1.7–1.8 GHz
Kryo 400 2018 ARMv8.2-A 4-wide 11–13 Yes
8-wide dispatch
Yes big 8 11 / 8 / 7 No No 64 + 64 512 KiB/Gold Prime

256 KiB/Gold

2 MiB 2, 1+1, 4, 1+3 ? 2.0–2.96 GHz
2-wide 8 No 0 Conditional+
Indirect branch
prediction
LITTLE 2 16–64? + 16–64? 128 KiB/Silver 4, 6 ? 1.7–1.8 GHz
Kryo 500 2019 ARMv8.2-A 4-wide 11–13 Yes
8-wide dispatch
Yes big 8 / 7 No ? 512 KiB/Gold Prime

256 KiB/Gold

3 MiB 2, 1+3 ? 2.0–3.2 GHz
2-wide 8 No 0 Conditional+
Indirect branch
prediction
LITTLE 2 ? 128 KiB/Silver 4, 6 ? 1.7–1.8 GHz
Kryo 600 2020 ARMv8.4-A 4-wide 11–13 Yes
8-wide dispatch
Yes big 6 / 5 No ? 64 + 64 1024 KiB/Gold Prime

512 KiB/Gold

4 MiB 2, 1+3 ? 2.2–3.0 GHz
2-wide 8 No 0 Conditional+
Indirect branch
prediction
LITTLE 2 ? 128 KiB/Silver 4, 6 ? 1.7–1.8 GHz
Falkor 2017 "ARMv8.1-A features"; AArch64 only (not 32-bit) 4-wide 10–15 Yes
8-wide dispatch
Yes ? 8 10 No 24 KiB 88 + 32 500KiB 1.25MiB 40–48 ? ?
Samsung M1 2016 ARMv8-A 4-wide 13 Yes
9-wide dispatch
96 big 8 14 No No 64 + 32 2 MiB No 4 ? 2.6 GHz
M2 2017 ARMv8-A 4-wide 100 Two-level big 10 No No 64 + 64 2 MiB No 4 ? 2.3 GHz
M3 2018 ARMv8.2-A 6-wide 15 Yes
12-wide dispatch
228 Two-level big 12 10 No No 64 + 64 512 KiB per core 4096KB 4 ? 2.7 GHz
M4 2019 ARMv8.2-A 6-wide 15 Yes
12-wide dispatch
228 Two-level big 12 8 / 7 No No 64 + 64 512 KiB per core 3072KB 2 ? 2.73 GHz
M5 2020 ARMv8.2-A 6-wide Yes
12-wide dispatch
228 Two-level big 7 No No 64 + 64 512 KiB per core 3072KB 2 ? 2.73 GHz
Fujitsu A64FX 2019 ARMv8.2-A 4/2-wide 7+ Yes
5-way?
Yes n/a 8+ 2*512b 7 No No 64 + 64 8MiB per 12+1 cores No 48+4 ? 1.9 GHz+
HiSilicon TaiShan V110 2019 ARMv8.2-A 4-wide ? Yes n/a 8 7 No No 64 + 64 512 KiB per core 1 MiB per core ? ? ?
Company Core Released Revision Decode Pipeline
depth
Out-of-order
execution
Branch
prediction
big.LITTLE role Exec. ports SIMD Fab
(in nm)
Simult. MT L0 cache L1 cache
Instr + Data
(in KiB)
L2 cache L3 cache Core
configu-
rations
Speed per core (DMIPS/
MHz
)
Clock rate ARM part number (in the main ID register)

ARMv9-A

Company Core Released Revision Decode Pipeline depth Out-of-order execution Branch
prediction
big.LITTLE role Exec. ports SIMD Fab
(in nm)
Simult. MT L0 cache L1 cache
Instr + Data
(in KiB)
L2 cache L3 cache Core
configu-
rations
Speed per core (DMIPS/
MHz
)
Clock rate ARM part number (in the main ID register)
Have it Entries
Arm Holdings Cortex-A510 May 2021 ARMv9-A 3 instructions decoded per cycle 8 stages No N/A (does not support out-of-order execution) Advanced techniques similar to larger cores, specifics not disclosed LITTLE 3 execution ports Yes (supports SIMD instructions) 5nm (common for SoCs using Cortex-A510) No N/A 32 or 64 KB each Configurable, typically 128 KB to 512 KB N/A Typically paired with Cortex-A710 in configurations (e.g., 1+3) Not explicitly stated, but performance uplift of 35% over A55 Up to 2.85 GHz (varies by implementation) Not specified in search results
Arm Holdings Cortex-A710 May 2021 ARMv9.0-A 5 instructions decoded per cycle 10 stages Yes 13 entries Enhanced with larger structures and better accuracy big 5 execution ports Yes 5nm Yes Not specified 64/128 KiB each 256/512 KiB Optional, up to 16 MiB Typically 1+3+4 (big.LITTLE) Not specified in results Up to 3.0 GHz (approx.) Not specified in results
Arm Holdings Cortex-A715 June 2022 ARMv9-A 5 instructions decoded per cycle 15 stages Yes 128 entries Advanced branch prediction capabilities big 4 execution ports Yes 4nm Yes Not specified 64 KiB each 1 MiB 16 MiB (in certain configurations) 1+3+4 or similar setups Not specified, but designed for high efficiency Up to 2.8 GHz Not specified
Arm Holdings Cortex-X2 May 2021 ARMv9-A 6 instructions per cycle 15 stages Yes 2048 entries Advanced, with improved accuracy big 3 execution ports Yes 5nm Yes Not specified 64 KiB each 1 MiB 8 MiB 1+3+4 (X2+A710+A510) Not specified Up to 3.2 GHz Not specified
Arm Holdings Cortex-X3 June 2022 ARMv9.0-A 1 instruction per cycle 15 stages Yes 128 entries Advanced branch prediction capabilities big 4 execution ports Yes 4nm Yes Not specified 64 KiB each 1 MiB 16 MiB 1+3+4 or up to 8+4 Not specified Up to 3.6 GHz Not specified

ARMv9-M

Company Core Released Revision Decode Pipeline depth Out-of-order execution Branch
prediction
big.LITTLE role Exec. ports SIMD Fab
(in nm)
Simult. MT L0 cache L1 cache
Instr + Data
(in KiB)
L2 cache L3 cache Core
configu-
rations
Speed per core (DMIPS/
MHz
)
Clock rate ARM part number (in the main ID register)
Have it Entries

ARMv9-R

Company Core Released Revision Decode Pipeline depth Out-of-order execution Branch
prediction
big.LITTLE role Exec. ports SIMD Fab
(in nm)
Simult. MT L0 cache L1 cache
Instr + Data
(in KiB)
L2 cache L3 cache Core
configu-
rations
Speed per core (DMIPS/
MHz
)
Clock rate ARM part number (in the main ID register)
Have it Entries

See also

Notes

  1. ^ As Dhrystone (implied in "DMIPS") is a synthetic benchmark developed in 1980s, it is no longer representative of prevailing workloads – use with caution.

References

  1. "ARM V7 Differences". infocenter.arm.com. ARM Information Center. Retrieved 1 June 2016.
  2. ^ "ARM processor hardware virtualization support". arm.com. ARM Holdings. Retrieved 1 June 2016.
  3. ^ "big.LITTLE processing with ARM Cortex-A15 & Cortex-A7" (PDF). arm.com. ARM Holdings. Archived from the original (PDF) on 17 October 2013. Retrieved 6 August 2014.
  4. "Cortex-A7 processor". arm.com. ARM Holdings. Retrieved 1 June 2016.
  5. "Cortex-A8 architecture". processors.wiki.TI.com. Texas Instruments. Archived from the original on 8 August 2014. Retrieved 6 August 2014.
  6. "The ARM Cortex-A9 processors" (PDF). arm.com. ARM Holdings. Archived from the original (PDF) on 17 November 2014. Retrieved 6 August 2014.
  7. ^ "Cortex-A9 processor". arm.com. ARM Holdings. Retrieved 15 September 2014.
  8. "ARM Cortex-A17 / Cortex-A12 processor update – Architectures and Processors blog – Arm Community blogs – Arm Community".
  9. "Cortex-A15 processor". arm.com. ARM Holdings. Retrieved 9 August 2016.
  10. "ARM Cortex-A17 MPCore processor technical reference manual" (PDF). infocenter.arm.com. ARM Holdings. Retrieved 18 September 2014.
  11. Klug, Brian (7 October 2011). "Qualcomm's new Snapdragon S4: MSM8960 & Krait architecture explored". anandtech.com. Anandtech. Retrieved 6 August 2014.
  12. Mallia, Lou (2007). "Qualcomm High Performance Processor Core and Platform for Mobile Applications" (PDF). Archived from the original (PDF) on 26 April 2017. Retrieved 8 May 2014.
  13. "Qualcomm's New Snapdragon S4: MSM8960 & Krait Architecture Explored".
  14. "Qualcomm Snapdragon S4 (Krait) Performance Preview – 1.5 GHZ MSM8960 MDP and Adreno 225 Benchmarks".
  15. Frumusanu, Andrei (22 February 2016). "ARM Announces Cortex-A32 IoT and Embedded Processor". Anandtech.com. Retrieved 13 June 2016.
  16. "New Ultra-efficient ARM Cortex-A32 Processor Expands… – ARM". arm.com. Retrieved 1 October 2016.
  17. Ltd, Arm. "Cortex-A34". ARM Developer. Retrieved 10 October 2019.
  18. "Cortex-A35 Processor". ARM. ARM Ltd.
  19. Frumusanu, Andrei. "ARM Announces New Cortex-A35 CPU – Ultra-High Efficiency For Wearables & More".
  20. ^ "High Performance Processors, Other Interesting Talks". Phoronix comments. Retrieved 24 January 2024.
  21. "Cortex-A53 Processor". ARM. ARM Ltd.
  22. ^ "Processing In Xilinx Devices" (PDF). Digilent documents. Retrieved 24 January 2024.
  23. ^ Matt, Humrick (29 May 2017). "Exploring DynamIQ and ARM's New CPUs: Cortex-A75, Cortex-A55". Anandtech.com. Retrieved 29 May 2017.
  24. "Qualcomm Snapdragon 888 5G Mobile Platform". Retrieved 6 January 2021.
  25. Based on 18% perf. increment over Cortex-A53 "Arm Cortex-A55: Efficient performance from edge to cloud". ARM. ARM Ltd.
  26. Smith, Andrei Frumusanu, Ryan. "ARM A53/A57/T760 investigated – Samsung Galaxy Note 4 Exynos Review". anandtech.com. Retrieved 17 June 2019.{{cite web}}: CS1 maint: multiple names: authors list (link)
  27. "TSMC Delivers First Fully Functional 16FinFET Networking Processor" (Press release). TSMC. 25 September 2014. Archived from the original on 20 February 2015. Retrieved 19 February 2015.
  28. "Cortex-A65 – Arm Developer". ARM Ltd. Retrieved 14 July 2020.
  29. "Cortex-A65AE – Arm Developer". ARM Ltd. Retrieved 26 April 2019.
  30. Frumusanu, Andrei. "ARM Reveals Cortex-A72 Architecture Details". Anandtech. Retrieved 25 April 2015.
  31. ^ "ARM's processor lines" (PDF). users.nik.uni-obuda.hu. November 2018. Retrieved 24 October 2023.
  32. Frumusanu, Andrei (29 May 2016). "The ARM Cortex A73 – Artemis Unveiled". Anandtech.com. Retrieved 31 May 2016.
  33. Frumusanu, Andrei (31 May 2018). "ARM Cortex-A76 CPU Unveiled". Anandtech. Retrieved 1 June 2018.
  34. "Cortex-A76AE – Arm Developer". ARM Ltd. Retrieved 14 July 2020.
  35. Schor, David (26 May 2019). "Arm Unveils Cortex-A77, Emphasizes Single-Thread Performance". WikiChip Fuse. Retrieved 17 June 2019.
  36. According to ARM, the Cortex-A77 has a 20% IPC single-thread performance improvement over its predecessor in Geekbench 4, 23% in SPECint2006, 35% in SPECfp2006, 20% in SPECint2017, and 25% in SPECfp2017
  37. "Arm Unveils the Cortex-A78: When Less Is More". WikiChip Fuse. 26 May 2020. Retrieved 28 May 2020.
  38. Ltd, Arm. "Cortex-A78". ARM Developer. Retrieved 28 May 2020.
  39. ^ "Introducing the Arm Cortex-X Custom program". community.arm.com. Retrieved 28 May 2020.
  40. Lal Shimpi, Anand (17 September 2013). "The iPhone 5s Review: The Move to 64-bit". AnandTech. Retrieved 3 July 2014.
  41. ^ Lal Shimpi, Anand (31 March 2014). "Apple's Cyclone Microarchitecture Detailed". AnandTech. Retrieved 3 July 2014.
  42. Dixon-Warren, Sinjin (20 January 2014). "Samsung 28nm HKMG Inside the Apple A7". Chipworks. Archived from the original on 6 April 2014. Retrieved 3 July 2014.
  43. Lal Shimpi, Anand (17 September 2013). "The iPhone 5s Review: A7 SoC Explained". AnandTech. Retrieved 3 July 2014.
  44. ^ Ho, Joshua; Smith, Ryan (2 November 2015). "The Apple iPhone 6s and iPhone 6s Plus Review". AnandTech. Retrieved 13 February 2016.
  45. "Apple had shifted the microarchitecture in Hurricane (A10) from a 6-wide decode from to a 7-wide decode". AnandTech. 5 October 2018.
  46. ^ "Apple A10 Fusion". system-on-a-chip.specout.com. Retrieved 1 October 2016.
  47. ^ "Measured and Estimated Cache Sizes". AnandTech. 5 October 2018.
  48. ^ "Apple A11 New Instruction Set Extensions" (PDF). Apple Inc. 8 June 2018.
  49. ^ "Apple A12 Pointer Authentication Codes". Jonathan Levin, @Morpheus. 12 September 2018. Archived from the original on 10 October 2018. Retrieved 8 October 2018.
  50. ^ "A13 has ARMv8.4, apparently (LLVM project sources, thanks, @Longhorn)". Jonathan Levin, @Morpheus. 13 March 2020.
  51. "The Apple A13 SoC: Lightning & Thunder". AnandTech. 16 October 2019.
  52. "The A13's Memory Subsystem: Faster L2, More SLC BW". AnandTech. 16 October 2019.
  53. ^ "llvm-project/llvm/lib/Target/AArch64/AArch64.td at main - llvm/llvm-project - GitHub". github.com. Retrieved 3 July 2023.
  54. "Apple Announces The Apple Silicon M1: Ditching x86 – What to Expect, Based on A14". AnandTech. 10 November 2020.
  55. Frumusanu, Andrei. "Apple Announces The Apple Silicon M1: Ditching x86 – What to Expect, Based on A14". anandtech.com. Retrieved 25 November 2020.
  56. Stam, Nick (11 August 2014). "Mile High Milestone: Tegra K1 "Denver" Will Be First 64-bit ARM Processor for Android". NVidia. Archived from the original on 12 August 2014. Retrieved 11 August 2014.
  57. Gwennap, Linley. "Denver Uses Dynamic Translation to Outperform Mobile Rivals". The Linley Group. Retrieved 24 April 2015.
  58. Ho, Joshua (25 August 2016). "Hot Chips 2016: NVIDIA Discloses Tegra Parker Details". Anandtech. Retrieved 25 August 2016.
  59. ^ De Gelas, Johan (16 December 2014). "ARM Challenging Intel in the Server Market". Anandtech. Retrieved 8 March 2017.
  60. ^ De Gelas, Johan (15 June 2016). "Investigating the Cavium ThunderX". Anandtech. Retrieved 8 March 2017.
  61. ^ "64-bit Cortex Platform To Take on x86 Servers in the Cloud". electronic design. 5 June 2014. Retrieved 7 February 2015.
  62. ^ "ThunderX_CP™ Family of Workload Optimized Compute Processors" (PDF). Cavium. 2014. Retrieved 7 February 2015.
  63. "A Look at Cavium's New High-Performance ARM Microprocessors and the Isambard Supercomputer". WikiChip Fuse. 3 June 2018. Retrieved 17 June 2019.
  64. "⚙ D30510 Vulcan is now ThunderX2T99". reviews.llvm.org.
  65. Kennedy, Patrick (7 May 2018). "Cavium ThunderX2 256 Thread Arm Platforms Hit General Availability". Retrieved 10 May 2018.
  66. "⚙ D21500 [AARCH64] Add support for Broadcom Vulcan". reviews.llvm.org.
  67. Hayes, Eric (7 April 2014). "IDC HPC USER FORUM" (PDF). hpcuserforum.com.
  68. "The Linley Group – Processor Conference 2013". linleygroup.com.
  69. "ThunderX2 ARM Processors- A Game Changing Family of Workload Optimized Processors for Data Center and Cloud Applications – Cavium". cavium.com.
  70. "Broadcom Announces Server-Class ARMv8-A Multi-Core Processor Architecture". Broadcom. 15 October 2013. Retrieved 11 August 2014.
  71. ^ Kennedy, Patrick (9 May 2018). "Cavium ThunderX2 Review and Benchmarks a Real Arm Server Option". Serve the Home. Retrieved 10 May 2018.
  72. ^ Frumusanu, Andrei (16 March 2020). "Marvell Announces ThunderX3: 96 Cores & 384 Thread 3rd Gen Arm Server Processor".
  73. Ganesh T S (3 October 2014). "ARMv8 Goes Embedded with Applied Micro's HeliX SoCs". AnandTech. Retrieved 9 October 2014.
  74. Morgan, Timothy Prickett (12 August 2014). "Applied Micro Plots Out X-Gene ARM Server Future". Enterprisetech. Retrieved 9 October 2014.
  75. ^ De Gelas, Johan (15 March 2017). "AppliedMicro's X-Gene 3 SoC Begins Sampling". Anandtech. Retrieved 15 March 2017.
  76. "Snapdragon 820 and Kryo CPU: heterogeneous computing and the role of custom compute". Qualcomm. 2 September 2015. Retrieved 6 September 2015.
  77. Frumusanu, Ryan Smith, Andrei. "The Qualcomm Snapdragon 820 Performance Preview: Meet Kryo".{{cite web}}: CS1 maint: multiple names: authors list (link)
  78. ^ Smith, Andrei Frumusanu, Ryan. "The Snapdragon 845 Performance Preview: Setting the Stage for Flagship Android 2018". Retrieved 11 June 2018.{{cite news}}: CS1 maint: multiple names: authors list (link)
  79. Shilov, Anton (16 December 2016). "Qualcomm Demos 48-Core Centriq 2400 SoC in Action, Begins Sampling". Anandtech. Retrieved 8 March 2017. In 2015, Qualcomm teamed up with Xilinx and Mellanox to ensure that its server SoCs are compatible with FPGA-based accelerators and data-center connectivity solutions (the fruits of this partnership will likely emerge in 2018 at best).
  80. ^ Cutress, Ian (20 August 2017). "Analyzing Falkor's Microarchitecture". Anandtech. Retrieved 21 August 2017. The CPU cores, code named Falkor, will be ARMv8.0 compliant although with ARMv8.1 features, allowing software to potentially seamlessly transition from other ARM environments (or need a recompile). The Centriq 2400 family is set to be AArch64 only, without support for AArch32: Qualcomm states that this saves some power and die area, but that they primarily chose this route because the ecosystems they are targeting have already migrated to 64-bit. Qualcomm's Chris Bergen, Senior Director of Product Management for the Centriq 2400, stated that the majority of new and upcoming companies have started off with 64-bit as their base in the data center, and not even considering 32-bit, which is a reason for the AArch64-only choice here. Micro-op cache / L0 I-cache with Way prediction The L1 I-cache is 64KB, which is similar to other ARM architecture core designs, and also uses 64-byte lines but with an 8-way associativity. To software, as the L0 is transparent, the L1 I-cache will show as an 88KB cache.
  81. Shrout, Ryan (8 November 2017). "Qualcomm Centriq 2400 Arm-based Server Processor Begins Commercial Shipment". PC Per. Retrieved 8 November 2017.
  82. ^ Ho, Joshua. "Hot Chips 2016: Exynos M1 Architecture Disclosed".
  83. ^ Frumusanu, Andrei. "Samsung Announces Exynos 8890 with Cat.12/13 Modem and Custom CPU".
  84. ^ Frumusanu, Andrei (23 January 2018). "The Samsung Exynos M3 – 6-wide Decode with 50%+ IPC Increase". Anandtech. Retrieved 25 January 2018.
  85. Frumusanu, Andrei. "Hot Chips 2016: Exynos M1 Architecture Disclosed". Anandtech. Retrieved 29 May 2017.
  86. "'Neural network' spotted deep inside Samsung's Galaxy S7 silicon brain". The Register.
  87. Frumusanu, Andrei. "Hot Chips 2018: Samsung's Exynos-M3 CPU Architecture Deep Dive". anandtech.com. Retrieved 17 June 2019.
  88. Schor, David (14 January 2019). "Samsung Discloses Exynos M4 Changes, Upgrades Support for ARMv8.2, Rearranges The Back-End". WikiChip Fuse. Retrieved 17 June 2019.
  89. Frumusanu, Andrei. "ISCA 2020: Evolution of the Samsung Exynos CPU Microarchitecture". anandtech.com. Retrieved 24 January 2021.
  90. Fujitsu High Performance CPU for the Post-K Computer (PDF), 21 July 2018, retrieved 16 September 2019
  91. Arm A64fx and Post-K: Game Changing CPU & Supercomputer for HPC and its Convergence of with Big Data / AI (PDF), 3 April 2019, retrieved 16 September 2019
  92. "Fujitsu Successfully Triples the Power Output of Gallium-Nitride Transistors – Fujitsu Global". fujitsu.com. Retrieved 23 November 2020.
  93. Schor, David (3 May 2019). "Huawei Expands Kunpeng Server CPUs, Plans SMT, SVE For Next Gen". WikiChip Fuse. Retrieved 13 December 2019.
ARM-based chips
Application ARM-based chips
Application
processors
(32-bit)
ARMv7-A
Cortex-A5
Cortex-A7
Cortex-A8
Cortex-A9
Cortex-A15
Cortex-A17
Others
ARMv7-A
compatible
ARMv8-A
Others
Application
processors
(64-bit)
ARMv8-A
Cortex-A35
Cortex-A53
Cortex-A57
Cortex-A72
Cortex-A73
Others
ARMv8-A
compatible
ARMv8.1-A
ARMv8.1-A
compatible
ARMv8.2-A
Cortex-A55
Cortex-A75
Cortex-A76
Cortex-A77
Cortex-A78
Cortex-X1
Neoverse N1
Others
  • Cortex-A65, Cortex-A65AE, Cortex-A76AE, Cortex-A78C, Cortex-X1C, Neoverse E1
ARMv8.2-A
compatible
ARMv8.3-A
ARMv8.3-A
compatible
ARMv8.4-A
Neoverse V1
ARMv8.4-A
compatible
ARMv8.5-A
ARMv8.5-A
compatible
ARMv8.6-A
ARMv8.6-A
compatible
ARMv8.7-A
ARMv8.7-A
compatible
ARMv9.0-A
Cortex-A510
Cortex-A710
Cortex-A715
Cortex-X2
Cortex-X3
Neoverse N2
Neoverse V2
ARMv9.2-A
Cortex-A520
Cortex-A720
Cortex-A725
Cortex-X4
Cortex-X925
Neoverse N3-
Neoverse V3-
ARMv9.2-A
compatible
Embedded ARM-based chips
Embedded
microcontrollers
Cortex-M0
  • Cypress PSoC 4000, 4100, 4100M, 4200, 4200DS, 4200L, 4200M
  • Infineon XMC1000
  • Nordic nRF51
  • NXP LPC1100, LPC1200
  • nuvoTon NuMicro
  • Sonix SN32F700
  • STMicroelectronics STM32 F0
  • Toshiba TX00
  • Vorago VA108x0
Cortex-M0+
  • Cypress PSoC 4000S, 4100S, 4100S+, 4100PS, 4700S, FM0+
  • Holtek HT32F52000
  • Microchip (Atmel) SAM C2, D0, D1, D2, DA, L2, R2, R3
  • NXP LPC800, LPC11E60, LPC11U60
  • NXP (Freescale) Kinetis E, EA, L, M, V1, W0
  • Raspberry Pi RP2040
  • Renesas Synergy S1
  • Silicon Labs (Energy Micro) EFM32 Zero, Happy
  • STMicroelectronics STM32 L0
Cortex-M1
  • Altera FPGAs Cyclone-II, Cyclone-III, Stratix-II, Stratix-III
  • Microsemi (Actel) FPGAs Fusion, IGLOO/e, ProASIC3L, ProASIC3/E
  • Xilinx FPGAs Spartan-3, Virtex-2-3-4
Cortex-M3
Cortex-M4
  • Microchip (Atmel) SAM 4L, 4N, 4S
  • NXP (Freescale) Kinetis K, W2
  • Renesas RA4W1, RA6M1, RA6M2, RA6M3, RA6T1
Cortex-M4F
  • Cypress 6200, FM4
  • Infineon XMC4000
  • Microchip (Atmel) SAM 4C, 4E, D5, E5, G5
  • Microchip CEC1302
  • Nordic nRF52
  • NXP LPC4000, LPC4300
  • NXP (Freescale) Kinetis K, V3, V4
  • Renesas Synergy S3, S5, S7
  • Silicon Labs (Energy Micro) EFM32 Wonder
  • STMicroelectronics STM32 F3, F4, L4, L4+, WB
  • Texas Instruments LM4F/TM4C, MSP432
  • Toshiba TX04
Cortex-M7F
  • Microchip (Atmel) SAM E7, S7, V7
  • NXP (Freescale) Kinetis KV5x, i.MX RT 10xx, i.MX RT 11xx, S32K3xx
  • STMicroelectronics STM32 F7, H7
Cortex-M23
  • GigaDevice CD32E2xx
  • Microchip (Atmel) SAM L10, L11, and PIC 32CM-LE 32CM-LS
  • Nuvoton M23xx family, M2xx family, NUC1262, M2L31
  • Renesas S1JA, RA2A1, RA2L1, RA2E1, RA2E2
Cortex-M33F
  • Analog Devices ADUCM4
  • Dialog DA1469x
  • GigaDevice GD32E5, GD32W5
  • Nordic nRF91, nRF5340, nRF54
  • NXP LPC5500, i.MX RT600
  • ON RSL15
  • Renesas RA4, RA6
  • ST STM32 H5, L5, U5, WBA
  • Silicon Labs Wireless Gecko Series 2
Cortex-M35P
  • STMicroelectronics ST33K
Cortex-M55F
Cortex-M85F
  • Renesas RA8
Real-time
microprocessors
Cortex-R4F
  • Texas Instruments RM4, TMS570
  • Renesas RZ/T1
Cortex-R5F
Cortex-R7F
  • Renesas RZ/G2E, RZ/G2H, RZ/G2M, RZ/G2N
Cortex-R52F
  • NXP S32Z, S32E
  • Renesas RZ/N2L, RZ/T2L, RZ/T2M
Cortex-R52+F
  • STMicroelectronics Stellar G, Stellar P
Classic ARM-based chips
Classic
processors
ARM7
ARM9
ARM11
ARMv2a
compatible
ARMv4
compatible
ARMv5TE
compatible
  • Intel/Marvell XScale
  • Marvell Sheeva, Feroceon, Jolteon, Mohawk
  • Faraday FA606TE, FA616TE, FA626TE, FA726TE
Category:
Comparison of ARM processors Add topic