Misplaced Pages

Conflict-free coloring

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (June 2024)

Conflict-free coloring is a generalization of the notion of graph coloring to hypergraphs.

Definition

A hypergraph H has a vertex-set V and an edge-set E. Each edge is a subset of vertices (in a graph, each edge contains at most two vertices, but in a hypergraph, it may contain more than two).

A coloring is an assignment of a color to each vertex of V.

A coloring is conflict-free if at least one vertex in each edge has a unique color. If H is a graph, then this condition becomes the standard condition for a legal coloring of a graph: the two vertices adjacent to every edge should have different colors.

Applications

Conflict-free colorings arise in the context of assigning frequency bands to cellular antennae, in battery consumption aspects of sensor networks and in RFID protocols.

Special cases

A common special case is when the vertices are points in the plane, and the edges are subsets of points contained in the same disk. In this setting, a coloring of the points is called conflict-free if, for every closed disk D containing at least one point from the set, there is a color that occurs precisely once. Any conflict-free coloring of every set of n points in the plane uses at least c log n colors, for an absolute constant c > 0. The same is true not only for disks but also for homothetic copies of any convex body.

Another special case is when the vertices are vertices of a graph, and the edges are sets of neighbors. In this setting, a coloring of the vertices is called conflict-free if, for every vertex v, there is a color that is assigned to exactly one vertex among v and its neighbors. In this setting, the conflict-free variant of the Hadwiger Conjecture holds: If a graph G does not contain Kk+1 as a minor, then it has a conflict-free coloring with at most k colors. For planar graphs, three colors are sometimes necessary and always sufficient for a conflict-free coloring. It is NP-complete to decide whether a planar graph has a conflict-free coloring with one color, and whether a planar graph has a conflict-free coloring with two colors.

External links

References

  1. ^ Smorodinsky, Shakhar (2013), Bárány, Imre; Böröczky, Károly J.; Tóth, Gábor Fejes; Pach, János (eds.), "Conflict-Free Coloring and its Applications", Geometry — Intuitive, Discrete, and Convex: A Tribute to László Fejes Tóth, Bolyai Society Mathematical Studies, vol. 24, Berlin, Heidelberg: Springer, pp. 331–389, arXiv:1005.3616, doi:10.1007/978-3-642-41498-5_12, ISBN 978-3-642-41498-5, S2CID 174683, retrieved 2021-01-20
  2. Pach, János; Tóth, Géza (2003), Aronov, Boris; Basu, Saugata; Pach, János; Sharir, Micha (eds.), "Conflict-free Colorings", Discrete and Computational Geometry: The Goodman-Pollack Festschrift, Algorithms and Combinatorics, vol. 25, Berlin, Heidelberg: Springer, pp. 665–671, doi:10.1007/978-3-642-55566-4_30, ISBN 978-3-642-55566-4, retrieved 2021-01-20
  3. Abel, Zachary; Alvarez, Victor; Demaine, Erik D.; Fekete, Sándor P.; Gour, Aman; Hesterberg, Adam; Keldenich, Phillip; Scheffer, Christian (2018-01-01). "Conflict-Free Coloring of Graphs". SIAM Journal on Discrete Mathematics. 32 (4): 2675–2702. doi:10.1137/17M1146579. hdl:1721.1/122951. ISSN 0895-4801.


Stub icon

This graph theory-related article is a stub. You can help Misplaced Pages by expanding it.

Categories:
Conflict-free coloring Add topic