Misplaced Pages

Earth trojan

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Earth Trojan asteroid) Asteroid with which Earth shares its orbit around the Sun The orbit of 2010 TK7, the first Earth trojan to be discovered (left). Lagrange points L4 and L5. Lines around the blue triangles represent tadpole orbits (right)

An Earth trojan is an asteroid that orbits the Sun in the vicinity of the Earth–Sun Lagrange points L4 (leading 60°) or L5 (trailing 60°), thus having an orbit similar to Earth's. Only two Earth trojans have so far been discovered. The name "trojan" was first used in 1906 for the Jupiter trojans, the asteroids that were observed near the Lagrangian points of Jupiter's orbit.

Members

2010 TK7, one of the two known Earth trojans, is located at the lower right, circled by a small green ring.

L4 (leading)

L5 (trailing)

  • No known objects are currently thought to be L5 trojans of Earth.

Searches

An Earth-based search for L5 objects was conducted in 1994, covering 0.35 square degrees of sky, under poor observing conditions. That search failed to detect any objects:

"The limiting sensitivity of this search was magnitude ~22.8, corresponding to C-type asteroids ~350 m in diameter, or S-type asteroids ~175 m in diameter."

In February 2017, the OSIRIS-REx spacecraft performed a search from within the L4 region on its way to asteroid Bennu. No additional Earth trojans were discovered.

In April 2017, the Hayabusa2 spacecraft searched the L5 region while proceeding to asteroid Ryugu, but did not find any asteroids there.

Giant-impact hypothesis

A hypothetical planet-sized Earth trojan the size of Mars, given the name Theia, is thought by proponents of the giant-impact hypothesis to be the origin of the Moon. The hypothesis states that the Moon formed after Earth and Theia collided, showering material from the two planets into space. This material eventually accreted around Earth and into a single orbiting body, the Moon.

At the same time, material from Theia mixed and combined with Earth's mantle and core. Supporters of the giant-impact hypothesis theorise that Earth's large core in relation to its overall volume is as a result of this combination.

Continuing interest in near-Earth asteroids

Astronomy continues to retain interest in the subject. A publication describes these reasons thus:

The survival to the present day of an ancient population is reasonably assured provided Earth's orbit itself was not strongly perturbed since its formation. It is therefore pertinent to consider that modern theoretical models of planet formation find strongly chaotic orbital evolution during the final stages of assembly of the terrestrial planets and the Earth–Moon system.

Such chaotic evolution may at first sight appear unfavorable to the survival of a primordial population of . However, during and after the chaotic assembly of the terrestrial planets, it is likely that a residual planetesimal population, of a few percent of Earth's mass, was present and helped to damp the orbital eccentricities and inclinations of the terrestrial planets to their observed low values, as well as to provide the so-called "late veneer" of accreting planetesimals to account for the abundance patterns of the highly siderophile elements in Earth's mantle.

Such a residual planetesimal population would also naturally lead to a small fraction trapped in the Earth's Trojan zones as Earth's orbit circularized. In addition to potentially hosting an ancient, long-term stable population of asteroids, Earth's Trojan regions also provide transient traps for NEOs that originate from more distal reservoirs of small bodies in the solar system like the main asteroid belt.

Other companions of Earth

Several other small objects have been found on an orbital path associated with Earth. Although these objects are in 1:1 orbital resonance, they are not Earth trojans, because they do not librate around a definite Sun–Earth Lagrangian point, neither L4 nor L5.

Earth has another noted companion, asteroid 3753 Cruithne. About 5 km across, it has a peculiar type of orbital resonance called an overlapping horseshoe, and is probably only a temporary liaison.

469219 Kamoʻoalewa, an asteroid discovered on 27 April 2016, is possibly the most stable quasi-satellite of Earth.

Known and suspected companions of Earth
Name Eccentricity Diameter
(m)
Discoverer Date of Discovery Type Current Type
Moon 0.055 3474800 ? Prehistory Natural satellite Natural satellite
1913 Great Meteor Procession ? ? ? 1913-02-09 Possible Temporary satellite Destroyed
3753 Cruithne 0.515 5000 Duncan Waldron 1986-10-10 Quasi-satellite Horseshoe orbit
1991 VG 0.053 5–12 Spacewatch 1991-11-06 Temporary satellite Apollo asteroid
(85770) 1998 UP1 0.345 210–470 Lincoln Lab's ETS 1998-10-18 Horseshoe orbit Horseshoe orbit
54509 YORP 0.230 124 Lincoln Lab's ETS 2000-08-03 Horseshoe orbit Horseshoe orbit
2001 GO2 0.168 35–85 Lincoln Lab's ETS 2001-04-13 Possible Horseshoe orbit Possible Horseshoe orbit
2002 AA29 0.013 20–100 LINEAR 2002-01-09 Quasi-satellite Horseshoe orbit
2003 YN107 0.014 10–30 LINEAR 2003-12-20 Quasi-satellite Horseshoe orbit
164207 Cardea 0.136 160–360 LINEAR 2004-04-13 Quasi-satellite Quasi-satellite
(277810) 2006 FV35 0.377 140–320 Spacewatch 2006-03-29 Quasi-satellite Quasi-satellite
2006 JY26 0.083 6–13 Catalina Sky Survey 2006-05-06 Horseshoe orbit Horseshoe orbit
2006 RH120 0.024 2–3 Catalina Sky Survey 2006-09-13 Temporary satellite Apollo asteroid
(419624) 2010 SO16 0.075 357 WISE 2010-09-17 Horseshoe orbit Horseshoe orbit
(706765) 2010 TK7 0.191 150–500 WISE 2010-10-01 Earth trojan Earth trojan
2013 BS45 0.083 20–40 Spacewatch 2010-01-20 Horseshoe orbit Horseshoe orbit
2013 LX28 0.452 130–300 Pan-STARRS 2013-06-12 Quasi-satellite temporary Quasi-satellite temporary
2014 OL339 0.461 70–160 EURONEAR 2014-07-29 Quasi-satellite temporary Quasi-satellite temporary
2015 SO2 0.108 50–110 Črni Vrh Observatory 2015-09-21 Quasi-satellite Horseshoe orbit temporary
2015 XX169 0.184 9–22 Mount Lemmon Survey 2015-12-09 Horseshoe orbit temporary Horseshoe orbit temporary
2015 YA 0.279 9–22 Catalina Sky Survey 2015-12-16 Horseshoe orbit temporary Horseshoe orbit temporary
2015 YQ1 0.404 7–16 Mount Lemmon Survey 2015-12-19 Horseshoe orbit temporary Horseshoe orbit temporary
469219 Kamoʻoalewa 0.104 40-100 Pan-STARRS 2016-04-27 Quasi-satellite stable Quasi-satellite stable
DN16082203 ? ? ? 2016-08-22 Possible Temporary satellite Destroyed
2020 CD3 0.017 1–6 Mount Lemmon Survey 2020-02-15 Temporary satellite Apollo asteroid
2020 PN1 0.127 10–50 ATLAS-HKO 2020-08-12 Horseshoe orbit temporary Horseshoe orbit temporary
2020 PP1 0.074 10–20 Pan-STARRS 2020-08-12 Quasi-satellite stable Quasi-satellite stable
(614689) 2020 XL5 0.387 1100-1260 Pan-STARRS 2020-12-12 Earth trojan Earth trojan
2022 NX1 0.025 5-15 Moonbase South Observatory 2020-07-02 Temporary satellite Apollo asteroid
2023 FW13 0.177 10-20 Pan-STARRS 2023-03-28 Quasi-satellite Quasi-satellite
2024 PT5 0.021 7–13 ATLAS South Africa, Sutherland 2024-08-07 Temporary satellite Temporary satellite

Gallery

  • Illustration of Trojan Asteroid 2020 XL5 Illustration of Trojan Asteroid 2020 XL5

See also

References

  1. Reilly, M. (27 July 2011). "Earth stalker found in eternal twilight". New Scientist. Retrieved 2014-02-21.
  2. Choi, C.Q. (27 July 2011). "First asteroid companion of Earth discovered at last". Space.com. Retrieved 2011-07-27.
  3. "OSIRIS-REx searches for Earth-trojan asteroids" (Press release). NASA. 9 February 2017.
  4. Hui, Man-To; Wiegert, Paul A.; Tholen, David J.; Föhring, Dora (November 2021). "The second Earth trojan 2020 XL5". The Astrophysical Journal Letters. 922 (2): L25. arXiv:2111.05058. Bibcode:2021ApJ...922L..25H. doi:10.3847/2041-8213/ac37bf. S2CID 243860678.
  5. ^ Whiteley, Robert J.; Tholen, David J. (1998). "CCD search for Lagrangian asteroids of the Earth–Sun system". Icarus. 136 (1): 154–167. Bibcode:1998Icar..136..154W. doi:10.1006/icar.1998.5995. article no. IS985995A. Received 24 November 1997; revised 13 April 1998.
  6. "NASA mission to search for rare asteroids" (Press release). NASA. Retrieved 2017-03-01.
  7. "OSIRIS-REx asteroid search tests instruments". NASA. Retrieved 2017-03-24.
  8. "太陽−地球系のL5点付近の観測について". JAXA. 2017-04-11. Retrieved 2017-04-18.
  9. Mission status of Hayabusa2 (PDF). 49th Lunar and Planetary Science Conference 2018. Retrieved 2018-08-10.
  10. Knapton, Sarah (29 January 2016). "Earth is actually two planets, scientists conclude". The Telegraph.
  11. "The Theia hypothesis: New evidence emerges that Earth and Moon were once the same". The Daily Galaxy. 2007-07-05. Retrieved 2013-11-13.
  12. Malhotra, Renu (February 18, 2019). "The case for a deep search for Earth's Trojan asteroids". Nature Astronomy. 3 (3): 193–194. arXiv:1903.01922. Bibcode:2019NatAs...3..193M. doi:10.1038/s41550-019-0697-z. S2CID 119333756.
  13. Murray, C. (1997). "The Earth's secret companion". Nature. 387 (6634): 651–652. Bibcode:1997Natur.387..651M. doi:10.1038/42585.
  14. Agle, D.C.; Brown, Dwayne; Cantillo, Laurie (15 June 2016). "Small asteroid is Earth's constant companion". NASA / JPL. Retrieved 15 June 2016.
  15. "Data from NSF's NOIRLab Show Earth Trojan Asteroid Is the Largest Found". Retrieved 27 January 2023.
Asteroids
Main
Distribution
Classification
Orbital
Spectral
Tholen
SMASS
Exploration
Lists
Related
Small Solar System bodies
Minor planets
Asteroid
Distant minor planet
Comets
Other
Solar System
The Sun, the planets, their moons, and several trans-Neptunian objectsThe SunMercuryVenusThe MoonEarthMarsPhobos and DeimosCeresThe main asteroid beltJupiterMoons of JupiterRings of JupiterSaturnMoons of SaturnRings of SaturnUranusMoons of UranusRings of UranusNeptuneMoons of NeptuneRings of NeptunePlutoMoons of PlutoHaumeaMoons of HaumeaMakemakeS/2015 (136472) 1The Kuiper BeltErisDysnomiaThe Scattered DiscThe Hills CloudThe Oort Cloud
Planets,
dwarfs,
minors
Moons
Formation,
evolution
,
contents,
and
History
Rings
Hypothetical
objects
Exploration
(outline)
Small
Solar
System
bodies
Lists
Related

Solar System → Local Interstellar Cloud → Local Bubble → Gould Belt → Orion Arm → Milky Way → Milky Way subgroup → Local GroupLocal SheetVirgo SuperclusterLaniakea Supercluster → Local Hole → Observable universe → Universe
Each arrow (→) may be read as "within" or "part of".

Portals: Categories:
Earth trojan Add topic