Misplaced Pages

Trabectedin

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Ecteinascidin 743) Chemical compound

Pharmaceutical compound
Trabectedin
Clinical data
Pronunciation/trəˈbɛktɪdɪn/
trə-BEK-ti-din
Trade namesYondelis
Other namesecteinascidin 743, ET-743
AHFS/Drugs.comMonograph
MedlinePlusa615059
License data
Pregnancy
category
  • AU: D
Routes of
administration
Intravenous
ATC code
Legal status
Legal status
  • AU: S4 (Prescription only)
  • UK: POM (Prescription only)
  • US: ℞-only
  • EU: Rx-only
  • In general: ℞ (Prescription only)
Pharmacokinetic data
BioavailabilityNot applicable (IV only)
Protein binding94 to 98%
MetabolismLiver (mostly CYP3A4-mediated)
Elimination half-life180 hours (mean)
ExcretionMostly fecal
Identifiers
IUPAC name
  • (1'R,6R,6aR,7R,13S,14S,16R)-6',8,14-trihydroxy-7',9-dimethoxy-4,10,23-trimethyl-19-oxo-3',4',6,7,12,13,14,16-octahydrospiroisoquinobenzazocine-20,1'(2'H)-isoquinolin]-5-yl acetate
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard100.223.368 Edit this at Wikidata
Chemical and physical data
FormulaC39H43N3O11S
Molar mass761.84 g·mol
3D model (JSmol)
SMILES
  • Cc1cc2c(c(c1OC)O)345c6c(c7c(c(c6OC(=O)C)C)OCO7)(N4((C2)N3C)O)COC(=O)8(CS5)c9cc(c(cc9CCN8)O)OC
InChI
  • InChI=1S/C39H43N3O11S/c1-16-9-20-10-22-37(46)42-23-13-50-38(47)39(21-12-25(48-5)24(44)11-19(21)7-8-40-39)14-54-36(30(42)29(41(22)4)26(20)31(45)32(16)49-6)28-27(23)35-34(51-15-52-35)17(2)33(28)53-18(3)43/h9,11-12,22-23,29-30,36-37,40,44-46H,7-8,10,13-15H2,1-6H3/t22-,23-,29+,30+,36+,37-,39+/m0/s1
  • Key:PKVRCIRHQMSYJX-AIFWHQITSA-N
  (what is this?)  (verify)

Trabectedin, sold under the brand name Yondelis, is an antitumor chemotherapy medication for the treatment of advanced soft-tissue sarcoma and ovarian cancer.

The most common adverse reactions include nausea, fatigue, vomiting, constipation, decreased appetite, diarrhea, peripheral edema, dyspnea, and headache.

It is sold by Pharma Mar S.A. and Johnson and Johnson. It is approved for use in the European Union, Russia, South Korea and the United States. The European Commission and the U.S. Food and Drug Administration (FDA) granted orphan drug status to trabectedin for soft-tissue sarcomas and ovarian cancer.

Discovery and production

During the 1950s and 1960s, the National Cancer Institute carried out a wide-ranging program of screening plant and marine organism material. As part of that program, extract from the sea squirt Ecteinascidia turbinata was found to have anticancer activity in 1969. Separation and characterization of the active molecules had to wait many years for the development of sufficiently sensitive techniques, and the structure of one of them, Ecteinascidin 743, was determined by KL Rinehart at the University of Illinois in 1984. Rinehart had collected his sea squirts by scuba diving in the reefs of the West Indies. The biosynthetic pathway responsible for producing the drug has been determined to come from Candidatus Endoecteinascidia frumentensis, a microbial symbiont of the tunicate. The Spanish company PharmaMar licensed the compound from the University of Illinois before 1994 and attempted to farm the sea squirt with limited success. Yields from the sea squirt are extremely low as around 1,000 kilograms of animals is needed to isolate 1 gram of trabectedin - and about 5 grams were believed to be needed for a clinical trial so Rinehart asked the Harvard chemist E. J. Corey to search for a synthetic method of preparation. His group developed such a method and published it in 1996. This was later followed by a simpler and more tractable method which was patented by Harvard and subsequently licensed to PharmaMar. The current supply is based on a semisynthetic process developed by PharmaMar starting from safracin B, a chemical obtained by fermentation of the bacterium Pseudomonas fluorescens. PharmaMar entered into an agreement with Johnson & Johnson to market the compound outside Europe.

Approvals and indications

Trabectedin was first trialed in humans in 1996.

Soft tissue sarcoma

In 2007, the European Commission gave authorization for the marketing of trabectedin, under the trade name Yondelis, "for the treatment of patients with advanced soft tissue sarcoma, after failure of anthracyclines and ifosfamide, or who are unsuited to receive these agents". The European Medicine Agency's evaluating committee, the Committee for Medicinal Products for Human Use (CHMP), observed that trabectedin had not been evaluated in an adequately designed and analyzed randomized controlled trial against current best care, and that the clinical efficacy data were mainly based on patients with liposarcoma and leiomyosarcoma. However, the pivotal study did show a significant difference between two different trabectedin treatment regimens, and due to the rarity of the disease, the CHMP considered that marketing authorization could be granted under exceptional circumstances. As part of the approval PharmaMar agreed to conduct a further trial to identify whether any specific chromosomal translocations could be used to predict responsiveness to trabectedin.

Trabectedin is also approved in South Korea and Russia.

In 2015, (after a phase III study comparing trabectedin with dacarbazine), the US FDA approved trabectedin (Yondelis) for the treatment of liposarcoma and leiomyosarcoma that is either unresectable or has metastasized. Patients must have received prior chemotherapy with an anthracycline.

Ovarian cancer and other

In 2008, the submission was announced of a registration dossier to the European Medicines Agency and the FDA for Yondelis when administered in combination with pegylated liposomal doxorubicin (Doxil, Caelyx) for the treatment of women with relapsed ovarian cancer. In 2011, Johnson & Johnson voluntarily withdrew the submission in the United States following a request by the FDA for an additional phase III study to be done in support of the submission.

Trabectedin is also in phase II trials for prostate, breast, and paediatric cancers.

Structure

Trabectedin is composed of three tetrahydroisoquinoline moieties, eight rings including one 10-membered heterocyclic ring containing a cysteine residue, and seven chiral centers.

Biosynthesis

Proposed scheme for the biosynthesis of the drug

The biosynthesis of trabectedin in the tunicate symbiotic bacteria Candidatus Endoecteinascidia frumentensis starts with a fatty acid loading onto the acyl-ligase domain of the EtuA3 module. A cysteine and glycine are then loaded as canonical NRPS amino acids. A tyrosine residue is modified by the enzymes EtuH, EtuM1, and EtuM2 to add a hydroxyl at the meta position of the phenol, and adding two methyl groups at the para-hydroxyl and the meta carbon position. This modified tyrosine reacts with the original substrate via a Pictet-Spengler reaction, where the amine group is converted to an imine by deprotonation, then attacks the free aldehyde to form a carbocation that is quenched by electrons from the methyl-phenol ring. This is done in the EtuA2 T-domain. This reaction is done a second time to yield a dimer of modified tyrosine residues that have been further cyclized via Pictet-Spengler reaction, yielding a bicyclic ring moiety. The EtuO and EtuF3 enzymes continue to post-translationally modify the molecule, adding several functional groups and making a sulfide bridge between the original cysteine residue and the beta-carbon of the first tyrosine to form ET-583, ET-597, ET-596, and ET-594 which have been previously isolated. A third O-methylated tyrosine is added and cyclized via Pictet-Spengler to yield the final product.

Total synthesis

The total synthesis by E.J. Corey used this proposed biosynthesis to guide their synthetic strategy. The synthesis uses such reactions as the Mannich reaction, Pictet-Spengler reaction, the Curtius rearrangement, and chiral rhodium-based diphosphine-catalyzed enantioselective hydrogenation. A separate synthetic process also involved the Ugi reaction to assist in the formation of the pentacyclic core. This reaction was unprecedented for using such a one pot multicomponent reaction in the synthesis of such a complex molecule.

Mechanism of action

Recently, it has been shown that trabectedin blocks DNA binding of the oncogenic transcription factor FUS-CHOP and reverses the transcriptional program in myxoid liposarcoma. By reversing the genetic program created by this transcription factor, trabectedin promotes differentiation and reverses the oncogenic phenotype in these cells.

Other than transcriptional interference, the mechanism of action of trabectedin is complex and not completely understood. The compound is known to bind and alkylate DNA at the N2 position of guanine. It is known from in vitro work that this binding occurs in the minor groove, spans approximately three to five base pairs and is most efficient with CGG sequences. Additional favorable binding sequences are TGG, AGC, or GGC. Once bound, this reversible covalent adduct bends DNA toward the major groove, interferes directly with activated transcription, poisons the transcription-coupled nucleotide excision repair complex, promotes degradation of RNA polymerase II, and generates DNA double-strand breaks.

In 2024, researchers from ETH Zürich and UNIST determined that abortive transcription-coupled nucleotide excision repair of trabectedin-DNA adducts forms persistent single-strand breaks (SSBs) as the adducts block the second of the two sequential NER incisions. The researchers mapped the 3’-hydroxyl groups of SSBs originating from the first NER incision at trabectedin lesions, recording TC-NER on a genome-wide scale, which resulted in a TC-NER-profiling assay TRABI-Seq.

Society and culture

Legal status

In September 2020, the European Medicines Agency recommended that the use of trabectedin in treating ovarian cancer remain unchanged.

References

  1. ^ "Yondelis". Therapeutic Goods Administration (TGA). 3 May 2021. Retrieved 6 September 2021.
  2. "Yondelis 1 mg powder for concentrate for solution for infusion - Summary of Product Characteristics (SmPC)". (emc). 21 September 2020. Retrieved 30 September 2020.
  3. ^ "Yondelis- trabectedin injection, powder, lyophilized, for solution". DailyMed. 22 September 2020. Retrieved 30 September 2020.
  4. ^ "Yondelis EPAR". European Medicines Agency (EMA). 17 September 2018. Retrieved 30 September 2020.
  5. Lichter W, Wallham LL, Van Der Worf BA, Middle Brook RE, Sigal MM, Weinheimer AJ (August 1972). Worthen LW (ed.). "Food Drugs from the Sea". Proceedings. 173. Marine Tech Soc: 117–127.
  6. Rinehart KL (January 2000). "Antitumor compounds from tunicates". Medicinal Research Reviews. 20 (1): 1–27. doi:10.1002/(SICI)1098-1128(200001)20:1<1::AID-MED1>3.0.CO;2-A. PMID 10608919. S2CID 25117225.
  7. ^ Cromie WJ (4 May 2000). "Potent cancer drugs made -- Sea squirts provide recipe". Harvard University Gazette. Archived from the original on 3 June 2006.
  8. ^ Rath CM, Janto B, Earl J, Ahmed A, Hu FZ, Hiller L, et al. (November 2011). "Meta-omic characterization of the marine invertebrate microbial consortium that produces the chemotherapeutic natural product ET-743". ACS Chemical Biology. 6 (11): 1244–1256. doi:10.1021/cb200244t. PMC 3220770. PMID 21875091.
  9. Pain S (14 September 1996). "Hostages of the deep - Prospectors are taking to the seas in search of new and promising chemicals. But the better the drugs turn out to be, the greater the threat to the animals that produce them". New Scientist.
  10. ^ Corey EJ, Gin DY, Kania RS (1996). "Enantioselective Total Synthesis of Ecteinascidin 743". Journal of the American Chemical Society. 118 (38): 9202–9203. Bibcode:1996JAChS.118.9202C. doi:10.1021/ja962480t.
  11. Cuevas C, Pérez M, Martín MJ, Chicharro JL, Fernández-Rivas C, Flores M, et al. (August 2000). "Synthesis of ecteinascidin ET-743 and phthalascidin Pt-650 from cyanosafracin B". Organic Letters. 2 (16): 2545–2548. doi:10.1021/ol0062502. PMID 10956543.
  12. "YONDELIS (trabectedin)" (PDF). Post-Authorization Summary of Positive Opinion. European Medicines Agency. 24 September 2009. Retrieved 12 November 2019.
  13. "CHMP evaluation" (PDF).
  14. "PharmaMar website". Archived from the original on September 18, 2008.
  15. "S.Korea approves Zeltia cancer drug Yondelis". Reuters. 8 May 2008. Retrieved 30 September 2020.
  16. "Trabectedin Superior to Dacarbazine for Leiomyosarcoma, Liposarcoma". Cancer Network. 21 September 2015. Archived from the original on 5 March 2016.
  17. "FDA Approves Trabectedin (Yondelis) for Advanced Soft-Tissue Sarcoma". Cancer Network. 26 October 2015. Archived from the original on 17 March 2016.
  18. Grogan K (3 May 2011). "J&J pulls submission for Zeltia's Yondelis". PharmaTimes Magazine. London, England. Online PharmaTimes. Archived from the original on 2 October 2011. Retrieved 7 May 2011.
  19. "Yondelis (trabectedin)". PharmaMar. Archived from the original on 13 February 2012.
  20. D'Incalci M, Galmarini CM (August 2010). "A review of trabectedin (ET-743): a unique mechanism of action". Molecular Cancer Therapeutics. 9 (8): 2157–2163. doi:10.1158/1535-7163.MCT-10-0263. PMID 20647340. S2CID 6723817.
  21. Chukwueke UN, Wen PY (2020). "Medical management of meningiomas". In McDermott MW (ed.). Meningiomas, Part II. Handbook of Clinical Neurology. Vol. 170. Elsevier. pp. 291–302. doi:10.1016/B978-0-12-822198-3.00048-3. ISBN 978-0-12-822198-3. PMC 6169485. PMID 32586501.
  22. ^ Grohar PJ, Griffin LB, Yeung C, Chen QR, Pommier Y, Khanna C, et al. (February 2011). "Ecteinascidin 743 interferes with the activity of EWS-FLI1 in Ewing sarcoma cells". Neoplasia. 13 (2): 145–153. doi:10.1593/neo.101202. PMC 3033593. PMID 21403840. and works cited therein.
  23. Son K, Takhaveev V, Mor V, Yu H, Dillier E, Zilio N, et al. (February 2024). "Trabectedin derails transcription-coupled nucleotide excision repair to induce DNA breaks in highly transcribed genes". Nature Communications. 15 (1): 1388. Bibcode:2024NatCo..15.1388S. doi:10.1038/s41467-024-45664-7. hdl:20.500.11850/661709. PMC 10869700. PMID 38360910.
  24. "Yondelis". European Medicines Agency (EMA). 27 February 2020. Retrieved 30 September 2020.
Intracellular chemotherapeutic agents / antineoplastic agents (L01)
SPs/MIs
(M phase)
Block microtubule assembly
Block microtubule disassembly
DNA replication
inhibitor
DNA precursors/
antimetabolites
(S phase)
Folic acid
Purine
Pyrimidine
Deoxyribonucleotide
Topoisomerase inhibitors
(S phase)
I
II
II+Intercalation
Crosslinking of DNA
(CCNS)
Alkylating
Platinum-based
Nonclassical
Intercalation
Photosensitizers/PDT
Other
Enzyme inhibitors
Receptor antagonists
Other/ungrouped
Portal: Categories:
Trabectedin Add topic