Misplaced Pages

Equivariant bundle

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In geometry and topology, given a group G (which may be a topological or Lie group), an equivariant bundle is a fiber bundle π : E B {\displaystyle \pi \colon E\to B} such that the total space E {\displaystyle E} and the base space B {\displaystyle B} are both G-spaces (continuous or smooth, depending on the setting) and the projection map π {\displaystyle \pi } between them is equivariant: π g = g π {\displaystyle \pi \circ g=g\circ \pi } with some extra requirement depending on a typical fiber.

For example, an equivariant vector bundle is an equivariant bundle such that the action of G restricts to a linear isomorphism between fibres.

References

  • Berline, Nicole; Getzler, E.; Vergne, Michèle (2004), Heat Kernels and Dirac Operators, Berlin, New York: Springer-Verlag


Stub icon

This differential geometry-related article is a stub. You can help Misplaced Pages by expanding it.

Categories:
Equivariant bundle Add topic