In Itô calculus, the Euler–Maruyama method (also simply called the Euler method) is a method for the approximate numerical solution of a stochastic differential equation (SDE). It is an extension of the Euler method for ordinary differential equations to stochastic differential equations named after Leonhard Euler and Gisiro Maruyama. The same generalization cannot be done for any arbitrary deterministic method.
Consider the stochastic differential equation (see Itô calculus)
with initial condition X0 = x0, where Wt denotes the Wiener process, and suppose that we wish to solve this SDE on some interval of time . Then the Euler–Maruyama approximation to the true solution X is the Markov chain Y defined as follows:
- Partition the interval into N equal subintervals of width :
- Set Y0 = x0
- Recursively define Yn for 0 ≤ n ≤ N-1 by
- where
The random variables ΔWn are independent and identically distributed normal random variables with expected value zero and variance Δt.
Example
Numerical simulation
An area that has benefited significantly from SDEs is mathematical biology. As many biological processes are both stochastic and continuous in nature, numerical methods of solving SDEs are highly valuable in the field.
The graphic depicts a stochastic differential equation solved using the Euler-Maruyama method. The deterministic counterpart is shown in blue.
Computer implementation
The following Python code implements the Euler–Maruyama method and uses it to solve the Ornstein–Uhlenbeck process defined by
The random numbers for are generated using the NumPy mathematics package.
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt class Model: """Stochastic model constants.""" THETA = 0.7 MU = 1.5 SIGMA = 0.06 def mu(y: float, _t: float) -> float: """Implement the Ornstein–Uhlenbeck mu.""" return Model.THETA * (Model.MU - y) def sigma(_y: float, _t: float) -> float: """Implement the Ornstein–Uhlenbeck sigma.""" return Model.SIGMA def dW(delta_t: float) -> float: """Sample a random number at each call.""" return np.random.normal(loc=0.0, scale=np.sqrt(delta_t)) def run_simulation(): """ Return the result of one full simulation.""" T_INIT = 3 T_END = 7 N = 1000 # Compute at 1000 grid points DT = float(T_END - T_INIT) / N TS = np.arange(T_INIT, T_END + DT, DT) assert TS.size == N + 1 Y_INIT = 0 ys = np.zeros(TS.size) ys = Y_INIT for i in range(1, TS.size): t = T_INIT + (i - 1) * DT y = ys ys = y + mu(y, t) * DT + sigma(y, t) * dW(DT) return TS, ys def plot_simulations(num_sims: int): """ Plot several simulations in one image.""" for _ in range(num_sims): plt.plot(*run_simulation()) plt.xlabel("time") plt.ylabel("y") plt.show() if __name__ == "__main__": NUM_SIMS = 5 plot_simulations(NUM_SIMS)
The following is simply the translation of the above code into the MATLAB (R2019b) programming language:
%% Initialization and Utility close all; clear all; numSims = 5; % display five runs tBounds = ; % The bounds of t N = 1000; % Compute at 1000 grid points dt = (tBounds(2) - tBounds(1)) / N ; y_init = 0; % Initial y condition % Initialize the probability distribution for our % random variable with mean 0 and stdev of sqrt(dt) pd = makedist('Normal',0,sqrt(dt)); c = ; % Theta, Mu, and Sigma, respectively ts = linspace(tBounds(1), tBounds(2), N); % From t0-->t1 with N points ys = zeros(1,N); % 1xN Matrix of zeros ys(1) = y_init; %% Computing the Process for j = 1:numSims for i = 2:numel(ts) t = tBounds(1) + (i-1) .* dt; y = ys(i-1); mu = c(1) .* (c(2) - y); sigma = c(3); dW = random(pd); ys(i) = y + mu .* dt + sigma .* dW; end figure; hold on; plot(ts, ys, 'o') end
See also
References
- Kloeden, P.E. & Platen, E. (1992). Numerical Solution of Stochastic Differential Equations. Springer, Berlin. ISBN 3-540-54062-8.