Misplaced Pages

Factorion

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Number that is the sum of the factorials of its digits

In number theory, a factorion in a given number base b {\displaystyle b} is a natural number that equals the sum of the factorials of its digits. The name factorion was coined by the author Clifford A. Pickover.

Definition

Let n {\displaystyle n} be a natural number. For a base b > 1 {\displaystyle b>1} , we define the sum of the factorials of the digits of n {\displaystyle n} , SFD b : N N {\displaystyle \operatorname {SFD} _{b}:\mathbb {N} \rightarrow \mathbb {N} } , to be the following:

SFD b ( n ) = i = 0 k 1 d i ! . {\displaystyle \operatorname {SFD} _{b}(n)=\sum _{i=0}^{k-1}d_{i}!.}

where k = log b n + 1 {\displaystyle k=\lfloor \log _{b}n\rfloor +1} is the number of digits in the number in base b {\displaystyle b} , n ! {\displaystyle n!} is the factorial of n {\displaystyle n} and

d i = n mod b i + 1 n mod b i b i {\displaystyle d_{i}={\frac {n{\bmod {b^{i+1}}}-n{\bmod {b^{i}}}}{b^{i}}}}

is the value of the i {\displaystyle i} th digit of the number. A natural number n {\displaystyle n} is a b {\displaystyle b} -factorion if it is a fixed point for SFD b {\displaystyle \operatorname {SFD} _{b}} , i.e. if SFD b ( n ) = n {\displaystyle \operatorname {SFD} _{b}(n)=n} . 1 {\displaystyle 1} and 2 {\displaystyle 2} are fixed points for all bases b {\displaystyle b} , and thus are trivial factorions for all b {\displaystyle b} , and all other factorions are nontrivial factorions.

For example, the number 145 in base b = 10 {\displaystyle b=10} is a factorion because 145 = 1 ! + 4 ! + 5 ! {\displaystyle 145=1!+4!+5!} .

For b = 2 {\displaystyle b=2} , the sum of the factorials of the digits is simply the number of digits k {\displaystyle k} in the base 2 representation since 0 ! = 1 ! = 1 {\displaystyle 0!=1!=1} .

A natural number n {\displaystyle n} is a sociable factorion if it is a periodic point for SFD b {\displaystyle \operatorname {SFD} _{b}} , where SFD b k ( n ) = n {\displaystyle \operatorname {SFD} _{b}^{k}(n)=n} for a positive integer k {\displaystyle k} , and forms a cycle of period k {\displaystyle k} . A factorion is a sociable factorion with k = 1 {\displaystyle k=1} , and a amicable factorion is a sociable factorion with k = 2 {\displaystyle k=2} .

All natural numbers n {\displaystyle n} are preperiodic points for SFD b {\displaystyle \operatorname {SFD} _{b}} , regardless of the base. This is because all natural numbers of base b {\displaystyle b} with k {\displaystyle k} digits satisfy b k 1 n ( b 1 ) ! ( k ) {\displaystyle b^{k-1}\leq n\leq (b-1)!(k)} . However, when k b {\displaystyle k\geq b} , then b k 1 > ( b 1 ) ! ( k ) {\displaystyle b^{k-1}>(b-1)!(k)} for b > 2 {\displaystyle b>2} , so any n {\displaystyle n} will satisfy n > SFD b ( n ) {\displaystyle n>\operatorname {SFD} _{b}(n)} until n < b b {\displaystyle n<b^{b}} . There are finitely many natural numbers less than b b {\displaystyle b^{b}} , so the number is guaranteed to reach a periodic point or a fixed point less than b b {\displaystyle b^{b}} , making it a preperiodic point. For b = 2 {\displaystyle b=2} , the number of digits k n {\displaystyle k\leq n} for any number, once again, making it a preperiodic point. This means also that there are a finite number of factorions and cycles for any given base b {\displaystyle b} .

The number of iterations i {\displaystyle i} needed for SFD b i ( n ) {\displaystyle \operatorname {SFD} _{b}^{i}(n)} to reach a fixed point is the SFD b {\displaystyle \operatorname {SFD} _{b}} function's persistence of n {\displaystyle n} , and undefined if it never reaches a fixed point.

Factorions for SFDb

b = (k − 1)!

Let k {\displaystyle k} be a positive integer and the number base b = ( k 1 ) ! {\displaystyle b=(k-1)!} . Then:

  • n 1 = k b + 1 {\displaystyle n_{1}=kb+1} is a factorion for SFD b {\displaystyle \operatorname {SFD} _{b}} for all k . {\displaystyle k.}
Proof

Let the digits of n 1 = d 1 b + d 0 {\displaystyle n_{1}=d_{1}b+d_{0}} be d 1 = k {\displaystyle d_{1}=k} , and d 0 = 1. {\displaystyle d_{0}=1.} Then

SFD b ( n 1 ) = d 1 ! + d 0 ! {\displaystyle \operatorname {SFD} _{b}(n_{1})=d_{1}!+d_{0}!}
= k ! + 1 ! {\displaystyle =k!+1!}
= k ( k 1 ) ! + 1 {\displaystyle =k(k-1)!+1}
= d 1 b + d 0 {\displaystyle =d_{1}b+d_{0}}
= n 1 {\displaystyle =n_{1}}

Thus n 1 {\displaystyle n_{1}} is a factorion for F b {\displaystyle F_{b}} for all k {\displaystyle k} .

  • n 2 = k b + 2 {\displaystyle n_{2}=kb+2} is a factorion for SFD b {\displaystyle \operatorname {SFD} _{b}} for all k {\displaystyle k} .
Proof

Let the digits of n 2 = d 1 b + d 0 {\displaystyle n_{2}=d_{1}b+d_{0}} be d 1 = k {\displaystyle d_{1}=k} , and d 0 = 2 {\displaystyle d_{0}=2} . Then

SFD b ( n 2 ) = d 1 ! + d 0 ! {\displaystyle \operatorname {SFD} _{b}(n_{2})=d_{1}!+d_{0}!}
= k ! + 2 ! {\displaystyle =k!+2!}
= k ( k 1 ) ! + 2 {\displaystyle =k(k-1)!+2}
= d 1 b + d 0 {\displaystyle =d_{1}b+d_{0}}
= n 2 {\displaystyle =n_{2}}

Thus n 2 {\displaystyle n_{2}} is a factorion for F b {\displaystyle F_{b}} for all k {\displaystyle k} .

Factorions
k {\displaystyle k} b {\displaystyle b} n 1 {\displaystyle n_{1}} n 2 {\displaystyle n_{2}}
4 6 41 42
5 24 51 52
6 120 61 62
7 720 71 72

b = k! − k + 1

Let k {\displaystyle k} be a positive integer and the number base b = k ! k + 1 {\displaystyle b=k!-k+1} . Then:

  • n 1 = b + k {\displaystyle n_{1}=b+k} is a factorion for SFD b {\displaystyle \operatorname {SFD} _{b}} for all k {\displaystyle k} .
Proof

Let the digits of n 1 = d 1 b + d 0 {\displaystyle n_{1}=d_{1}b+d_{0}} be d 1 = 1 {\displaystyle d_{1}=1} , and d 0 = k {\displaystyle d_{0}=k} . Then

SFD b ( n 1 ) = d 1 ! + d 0 ! {\displaystyle \operatorname {SFD} _{b}(n_{1})=d_{1}!+d_{0}!}
= 1 ! + k ! {\displaystyle =1!+k!}
= k ! + 1 k + k {\displaystyle =k!+1-k+k}
= 1 ( k ! k + 1 ) + k {\displaystyle =1(k!-k+1)+k}
= d 1 b + d 0 {\displaystyle =d_{1}b+d_{0}}
= n 1 {\displaystyle =n_{1}}

Thus n 1 {\displaystyle n_{1}} is a factorion for F b {\displaystyle F_{b}} for all k {\displaystyle k} .

Factorions
k {\displaystyle k} b {\displaystyle b} n 1 {\displaystyle n_{1}}
3 4 13
4 21 14
5 116 15
6 715 16

Table of factorions and cycles of SFDb

All numbers are represented in base b {\displaystyle b} .

Base b {\displaystyle b} Nontrivial factorion ( n 1 {\displaystyle n\neq 1} , n 2 {\displaystyle n\neq 2} ) Cycles
2 {\displaystyle \varnothing } {\displaystyle \varnothing }
3 {\displaystyle \varnothing } {\displaystyle \varnothing }
4 13 3 → 12 → 3
5 144 {\displaystyle \varnothing }
6 41, 42 {\displaystyle \varnothing }
7 {\displaystyle \varnothing } 36 → 2055 → 465 → 2343 → 53 → 240 → 36
8 {\displaystyle \varnothing }

3 → 6 → 1320 → 12

175 → 12051 → 175

9 62558
10 145, 40585

871 → 45361 → 871

872 → 45362 → 872

See also

References

  1. Sloane, Neil, "A014080", On-Line Encyclopedia of Integer Sequences
  2. Gardner, Martin (1978), "Factorial Oddities", Mathematical Magic Show: More Puzzles, Games, Diversions, Illusions and Other Mathematical Sleight-Of-Mind, Vintage Books, pp. 61 and 64, ISBN 9780394726236
  3. Madachy, Joseph S. (1979), Madachy's Mathematical Recreations, Dover Publications, p. 167, ISBN 9780486237626
  4. Pickover, Clifford A. (1995), "The Loneliness of the Factorions", Keys to Infinity, John Wiley & Sons, pp. 169–171 and 319–320, ISBN 9780471193340 – via Google Books
  5. Gupta, Shyam S. (2004), "Sum of the Factorials of the Digits of Integers", The Mathematical Gazette, 88 (512), The Mathematical Association: 258–261, doi:10.1017/S0025557200174996, JSTOR 3620841, S2CID 125854033
  6. Sloane, Neil, "A061602", On-Line Encyclopedia of Integer Sequences
  7. Abbott, Steve (2004), "SFD Chains and Factorion Cycles", The Mathematical Gazette, 88 (512), The Mathematical Association: 261–263, doi:10.1017/S002555720017500X, JSTOR 3620842, S2CID 99976100
  8. ^ Sloane, Neil, "A214285", On-Line Encyclopedia of Integer Sequences
  9. ^ Sloane, Neil, "A254499", On-Line Encyclopedia of Integer Sequences
  10. Sloane, Neil, "A193163", On-Line Encyclopedia of Integer Sequences

External links

Classes of natural numbers
Powers and related numbers
Of the form a × 2 ± 1
Other polynomial numbers
Recursively defined numbers
Possessing a specific set of other numbers
Expressible via specific sums
Figurate numbers
2-dimensional
centered
non-centered
3-dimensional
centered
non-centered
pyramidal
4-dimensional
non-centered
Combinatorial numbers
Primes
Pseudoprimes
Arithmetic functions and dynamics
Divisor functions
Prime omega functions
Euler's totient function
Aliquot sequences
Primorial
Other prime factor or divisor related numbers
Numeral system-dependent numbers
Arithmetic functions
and dynamics
Digit sum
Digit product
Coding-related
Other
P-adic numbers-related
Digit-composition related
Digit-permutation related
Divisor-related
Other
Binary numbers
Generated via a sieve
Sorting related
Natural language related
Graphemics related
Categories:
Factorion Add topic