Misplaced Pages

Iron monosilicide

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from FeSi)
Iron monosilicide
Structures of left-handed and right-handed FeSi crystals. The top presentation shows the eight atoms of the unit cell. The middle shows polyhedra surrounding the iron atoms. The bottom show the presence of 3-fold screw axes.
Names
IUPAC name Iron silicide
Other names Naquite, fersilicite
Identifiers
CAS Number
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.031.506 Edit this at Wikidata
EC Number
  • 234-670-2
PubChem CID
UNII
CompTox Dashboard (EPA)
InChI
  • InChI=1S/Fe.SiKey: XWHPIFXRKKHEKR-UHFFFAOYSA-N
SMILES
  • .
Properties
Chemical formula FeSi
Molar mass 83.931 g/mol
Appearance gray cubic crystals
Density 6.1 g/cm
Melting point 1,410 °C (2,570 °F; 1,680 K)
Band gap 0.05 eV (ind.)
0.14 eV (dir.)
Magnetic susceptibility (χ) 8.5×10 emu/g
Structure
Crystal structure Cubic
Space group P213 (No. 198), cP8
Lattice constant a = 0.44827(1) nm
Formula units (Z) 4
Hazards
Flash point Non-flammable
Related compounds
Other anions Iron germanide
Other cations Cobalt silicide
Manganese silicide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). ☒N (what is  ?) Infobox references
Chemical compound

Iron monosilicide (FeSi) is an intermetallic compound, a silicide of iron that occurs in nature as the rare mineral naquite. It is a narrow-bandgap semiconductor with a room-temperature electrical resistivity of around 10 kΩ·cm and unusual magnetic properties at low temperatures. FeSi has a cubic crystal lattice with no inversion center; therefore its magnetic structure is helical, with right-hand and left-handed chiralities.

The structure is the prototype of the "iron monosilicide structure type", of space group P213 (no. 198). It is similar to the structure of sodium chloride, with four iron atoms and four silicon atoms in each unit cell. Whereas in sodium chloride the eight atoms are at the corners of a cube and each ion is surrounded by six counterions, in iron monosilicide the atoms are all displaced parallel to body diagonals (along threefold axes) from the positions of sodium and chloride. The crystal loses all indirect (chirality reversing) symmetry elements, all fourfold and twofold rotation axes, and many of the threefold axes and translations, but retains some of the twofold screw axes and threefold axes of the sodium chloride crystal structure. As an atom is moved from (0,0,0) to (x,x,x), the other three atoms of the same kind move as well, creating a chiral arrangement except when x is a multiple of ⁠1/4⁠. The atoms of the other kind are displaced as well, with one of the four at (y,y,y). If x = −y = ±⁠√5 – 1/8⁠ ≈ ±0.1545 then each ion will be equidistant from seven atoms of the other kind, at a distance of ⁠(√5 − 1)√3/4⁠ ≈ 0.53523, rather than six at a distance of ⁠1/2⁠ and one at a distance of ⁠√3/2⁠ in the sodium chloride structure.

In the case of iron monosilicide, x = 0.13652 and y = 0.8424 (or −0.1576), or x = −0.13652 and y = 0.1576, so the seven silicon atoms around an iron atom are not all the same distance from the iron atom. Each silicon atom sits in a similar cage of iron atoms. The cages only have threefold rotational symmetry, with three slightly different interatomic distances between the central atom and the seven surrounding atoms (to 3 atoms, 3 atoms, and 1 atom respectively). There are right-handed and left-handed threefold screw axes without there being a symmetry element taking one to the other. (Threefold screw axes also exist in sodium chloride but are related by a mirror.) This means that iron monosilicide crystals exist in two different enantiomorphs, depending on the signs of x and y.

In 1948 Linus Pauling investigated the nature of the bonds in iron monosilicide.

See also

References

  1. ^ Haynes, William M., ed. (2016). CRC Handbook of Chemistry and Physics (97th ed.). CRC Press. p. 4.68. ISBN 9781498754293.
  2. Galakhov, V R; Kurmaev, E Z; Cherkashenko, V M; Yarmoshenko, Yu M; Shamin, S N; Postnikov, A V; Uhlenbrock, S; Neumann, M; Lu, Z W; Klein, B M; Shi, Zhu-Pei (1995). "Electronic structure of FeSi". Journal of Physics: Condensed Matter. 7 (28): 5529–5535. arXiv:mtrl-th/9505004. Bibcode:1995JPCM....7.5529G. doi:10.1088/0953-8984/7/28/010. S2CID 15970627.
  3. ^ Jaccarino, V.; Wertheim, G. K.; Wernick, J. H.; Walker, L. R.; Arajs, Sigurds (1967). "Paramagnetic Excited State of FeSi". Physical Review. 160 (3): 476–482. Bibcode:1967PhRv..160..476J. doi:10.1103/PhysRev.160.476.
  4. ^ Stishov, Sergei M.; Petrova, Alla E. (2011). "Itinerant helimagnetic compound MnSi". Uspekhi Fizicheskikh Nauk. 181 (11): 1157. doi:10.3367/UFNr.0181.201111b.1157.
  5. "FeSi (B20) Structure". Encyclopedia of Crystallographic Prototypes. AFLOW.
  6. Ulrich Burkhardt; et al. (Mar 4, 2020). "Absolute Structure from Scanning Electron Microscopy". Scientific Reports. 10 (1): 4065. Bibcode:2020NatSR..10.4065B. doi:10.1038/s41598-020-59854-y. PMC 7055257. PMID 32132558.
  7. Pauling, Linus; Soldate, A. M. (September 1948). "The nature of the bonds in the iron silicide, FeSi, and related crystals". Acta Crystallographica. 1 (4): 212–216. Bibcode:1948AcCry...1..212P. doi:10.1107/S0365110X48000570.
Iron compounds
Fe(−II)
Fe(0)
Fe(I)
Organoiron(I) compounds
  • (C5H5FeCO)2(CO)2
  • Fe(0,II)
    Fe(II)
    Organoiron(II) compounds
    Fe(0,III)
    Fe(II,III)
    Fe(III)
    Organoiron(III) compounds
    Fe(IV)
    Fe(VI)
    Purported
    sort
    Salts and covalent derivatives of the silicide ion
    SiH4
    +H
    He
    LiSi Be2Si SiB3
    SiB6
    +B
    SiC
    +C
    Si3N4
    -N
    +N
    SiO2 SiF4 Ne
    NaSi Mg2Si Al Si SiP, SiP2
    -P
    +P
    SiS2
    -S
    SiCl4 Ar
    KSi CaSi
    CaSi2
    ScSi Sc5Si3 Sc2Si3 Sc5Si4 TiSi
    TiSi2
    V3Si V5Si3, V6Si5, VSi2, V6Si5 Cr3Si Cr5Si3, CrSi, CrSi2 MnSi, MnSi2, Mn9Si2, Mn3Si, Mn5Si3, Mn11Si9 FeSi2
    FeSi
    Fe5Si3
    Fe2Si
    Fe3Si
    CoSi, CoSi2, Co2Si, Co3Si NiSi, more… Cu17Si3, Cu56Si11, Cu5Si, Cu33Si7, Cu4Si, Cu19Si6, Cu3Si, Cu87Si13 Zn Ga GeSi
    +Ge
    SiAs, SiAs2
    -As
    +As
    SiSe2 SiSe SiBr4 Kr
    RbSi SrSi2 YSi Y5Si3, Y5Si4, Y3Si5, YSi1.4 ZrSi Zr5Si3, Zr5Si4, ZrSi2, Zr3Si2, Zr2Si, Zr3Si Nb4Si Nb5Si3 MoSi2
    Mo3Si Mo5Si3
    Tc RuSi Ru2Si, Ru4Si3, Ru2Si3 RhSi Rh2Si, Rh5Si3, Rh3Si2, Rh20Si13 PdSi Pd5Si, Pd9Si2, Pd3Si, Pd2Si Ag Cd In Sn Sb TeSi2 Te2Si3 SiI4 Xe
    CsSi Ba2Si BaSi2, Ba5Si3 Ba3Si4 * Lu5Si3 HfSi Hf2Si, Hf3Si2, Hf5Si4, HfSi2 Ta9Si2, Ta3Si, Ta5Si3 WSi2 W5Si3 ReSi Re2Si, ReSi1.8 Re5Si3 OsSi IrSi PtSi Au Hg Tl Pb Bi Po At Rn
    Fr Ra ** Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
     
    * LaSi2 La5Si3, La3Si2, La5Si4, LaSi CeSi2 Ce5Si3, Ce3Si2, Ce5Si4, CeSi, Ce3Si5 PrSi2 Pr5Si3, Pr3Si2, Pr5Si4, PrSi NdSi Nd5Si3, Nd5Si4, Nd5Si3, Nd3Si4, Nd2Si3, NdSix Pm SmSi2 Sm5Si4, Sm5Si3, SmSi, Sm3Si5 Eu? GdSi2 Gd5Si3, Gd5Si4, GdSi TbSi2 SiTb, Si4Tb5, Si3Tb5 DySi2 DySi HoSi2 Ho5Si3, Ho5Si4, HoSi, Ho4Si5 ErSi2 Er5Si3, Er5Si4, ErSi Tm? YbSi Si1.8Yb, Si5Yb3, Si4Yb3, Si4Yb5, Si3Yb5
    ** Ac ThSi PaSi USi2 NpSi2 PuSi Am Cm Bk Cf Es Fm Md No
    Categories:
    Iron monosilicide Add topic