Misplaced Pages

Fuzzy differential inclusion

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Fuzzy differential inclusion is the extension of differential inclusion to fuzzy sets introduced by Lotfi A. Zadeh.

x ( t ) [ f ( t , x ( t ) ) ] α {\displaystyle x'(t)\in ^{\alpha }} with x ( 0 ) [ x 0 ] α {\displaystyle x(0)\in ^{\alpha }}

Suppose f ( t , x ( t ) ) {\displaystyle f(t,x(t))} is a fuzzy valued continuous function on Euclidean space. Then it is the collection of all normal, upper semi-continuous, convex, compactly supported fuzzy subsets of R n {\displaystyle \mathbb {R} ^{n}} .

Second order differential

The second order differential is

x ( t ) [ k x ] α {\displaystyle x''(t)\in ^{\alpha }} where k [ K ] α {\displaystyle k\in ^{\alpha }} , K {\displaystyle K} is trapezoidal fuzzy number ( 1 , 1 / 2 , 0 , 1 / 2 ) {\displaystyle (-1,-1/2,0,1/2)} , and x 0 {\displaystyle x_{0}} is a trianglular fuzzy number (-1,0,1).

Applications

Fuzzy differential inclusion (FDI) has applications in

References

  1. Lakshmikantham, V.; Mohapatra, Ram N. (11 September 2019). Theory of Fuzzy Differential Equations and Inclusions. ISBN 978-0-367-39532-2.
  2. Min, Chao; Liu, Zhi-bin; Zhang, Lie-hui; Huang, Nan-jing (2015). "On a System of Fuzzy Differential Inclusions". Filomat. 29 (6): 1231–1244. doi:10.2298/FIL1506231M. ISSN 0354-5180. JSTOR 24898205.
  3. "Fuzzy differential inclusion in atmospheric and medical cybernetics" (PDF).
  4. Tafazoli, Sina; Menhaj, Mohammad Bagher (March 2009). "Fuzzy differential inclusion in neural modeling". 2009 IEEE Symposium on Computational Intelligence in Control and Automation. pp. 70–77. doi:10.1109/CICA.2009.4982785. ISBN 978-1-4244-2752-9. S2CID 5618541.
  5. Min, Chao; Zhong, Yihua; Yang, Yan; Liu, Zhibin (May 2012). "On the implicit fuzzy differential inclusions". 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery. pp. 117–119. doi:10.1109/FSKD.2012.6234283. ISBN 978-1-4673-0024-7. S2CID 1952893.
  6. Antonelli, Peter L.; Křivan, Vlastimil (1992). "Fuzzy differential inclusions as substitutes for stochastic differential equations in population biology". Open Systems & Information Dynamics. 1 (2): 217–232. doi:10.1007/BF02228945. JSTOR 24898205. S2CID 123026730.
Categories: