Misplaced Pages

Gauss–Laguerre quadrature

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Gauss-Laguerre quadrature)

In numerical analysis Gauss–Laguerre quadrature (named after Carl Friedrich Gauss and Edmond Laguerre) is an extension of the Gaussian quadrature method for approximating the value of integrals of the following kind:

0 + e x f ( x ) d x . {\displaystyle \int _{0}^{+\infty }e^{-x}f(x)\,dx.}

In this case

0 + e x f ( x ) d x i = 1 n w i f ( x i ) {\displaystyle \int _{0}^{+\infty }e^{-x}f(x)\,dx\approx \sum _{i=1}^{n}w_{i}f(x_{i})}

where xi is the i-th root of Laguerre polynomial Ln(x) and the weight wi is given by

w i = x i ( n + 1 ) 2 [ L n + 1 ( x i ) ] 2 . {\displaystyle w_{i}={\frac {x_{i}}{\left(n+1\right)^{2}\left^{2}}}.}

The following Python code with the SymPy library will allow for calculation of the values of x i {\displaystyle x_{i}} and w i {\displaystyle w_{i}} to 20 digits of precision:

from sympy import *
def lag_weights_roots(n):
    x = Symbol("x")
    roots = Poly(laguerre(n, x)).all_roots()
    x_i = 
    w_i = 
    return x_i, w_i
print(lag_weights_roots(5))

For more general functions

To integrate the function f {\displaystyle f} we apply the following transformation

0 f ( x ) d x = 0 f ( x ) e x e x d x = 0 g ( x ) e x d x {\displaystyle \int _{0}^{\infty }f(x)\,dx=\int _{0}^{\infty }f(x)e^{x}e^{-x}\,dx=\int _{0}^{\infty }g(x)e^{-x}\,dx}

where g ( x ) := e x f ( x ) {\displaystyle g\left(x\right):=e^{x}f\left(x\right)} . For the last integral one then uses Gauss-Laguerre quadrature. Note, that while this approach works from an analytical perspective, it is not always numerically stable.

Generalized Gauss–Laguerre quadrature

More generally, one can also consider integrands that have a known x α {\displaystyle x^{\alpha }} power-law singularity at x=0, for some real number α > 1 {\displaystyle \alpha >-1} , leading to integrals of the form:

0 + x α e x f ( x ) d x . {\displaystyle \int _{0}^{+\infty }x^{\alpha }e^{-x}f(x)\,dx.}

In this case, the weights are given in terms of the generalized Laguerre polynomials:

w i = Γ ( n + α + 1 ) x i n ! ( n + 1 ) 2 [ L n + 1 ( α ) ( x i ) ] 2 , {\displaystyle w_{i}={\frac {\Gamma (n+\alpha +1)x_{i}}{n!(n+1)^{2}^{2}}}\,,}

where x i {\displaystyle x_{i}} are the roots of L n ( α ) {\displaystyle L_{n}^{(\alpha )}} .

This allows one to efficiently evaluate such integrals for polynomial or smooth f(x) even when α is not an integer.

References

  1. Equation 25.4.45 in Abramowitz, M.; Stegun, I. A. (1964). Handbook of Mathematical Functions. Dover. ISBN 978-0-486-61272-0. 10th reprint with corrections.
  2. Weisstein, Eric W., "Laguerre-Gauss Quadrature" From MathWorld--A Wolfram Web Resource, Accessed March 9, 2020
  3. Rabinowitz, P.; Weiss, G. (1959). "Tables of Abscissas and Weights for Numerical Evaluation of Integrals of the form 0 exp ( x ) x n f ( x ) d x {\displaystyle \int _{0}^{\infty }\exp(-x)x^{n}f(x)\,dx} ". Mathematical Tables and Other Aids to Computation. 13: 285–294. doi:10.1090/S0025-5718-1959-0107992-3.

Further reading

External links

Numerical integration
Newton–Cotes formulas
Gaussian quadrature
Other
Category:
Gauss–Laguerre quadrature Add topic