Misplaced Pages

Great retrosnub icosidodecahedron

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Uniform star polyhedron
Great retrosnub icosidodecahedron
Type Uniform star polyhedron
Elements F = 92, E = 150
V = 60 (χ = 2)
Faces by sides (20+60){3}+12{5/2}
Coxeter diagram
Wythoff symbol | 2 3/2 5/3
Symmetry group I, , 532
Index references U74, C90, W117
Dual polyhedron Great pentagrammic hexecontahedron
Vertex figure
(3.5/2)/2
Bowers acronym Girsid
3D model of a great retrosnub icosidodecahedron

In geometry, the great retrosnub icosidodecahedron or great inverted retrosnub icosidodecahedron is a nonconvex uniform polyhedron, indexed as U74. It has 92 faces (80 triangles and 12 pentagrams), 150 edges, and 60 vertices. It is given a Schläfli symbol sr{3⁄2,5⁄3}.

Cartesian coordinates

Let ξ 1.8934600671194555 {\displaystyle \xi \approx -1.8934600671194555} be the smallest (most negative) zero of the polynomial x 3 + 2 x 2 ϕ 2 {\displaystyle x^{3}+2x^{2}-\phi ^{-2}} , where ϕ {\displaystyle \phi } is the golden ratio. Let the point p {\displaystyle p} be given by

p = ( ξ ϕ 2 ϕ 2 ξ ϕ 3 + ϕ 1 ξ + 2 ϕ 1 ξ 2 ) {\displaystyle p={\begin{pmatrix}\xi \\\phi ^{-2}-\phi ^{-2}\xi \\-\phi ^{-3}+\phi ^{-1}\xi +2\phi ^{-1}\xi ^{2}\end{pmatrix}}} .

Let the matrix M {\displaystyle M} be given by

M = ( 1 / 2 ϕ / 2 1 / ( 2 ϕ ) ϕ / 2 1 / ( 2 ϕ ) 1 / 2 1 / ( 2 ϕ ) 1 / 2 ϕ / 2 ) {\displaystyle M={\begin{pmatrix}1/2&-\phi /2&1/(2\phi )\\\phi /2&1/(2\phi )&-1/2\\1/(2\phi )&1/2&\phi /2\end{pmatrix}}} .

M {\displaystyle M} is the rotation around the axis ( 1 , 0 , ϕ ) {\displaystyle (1,0,\phi )} by an angle of 2 π / 5 {\displaystyle 2\pi /5} , counterclockwise. Let the linear transformations T 0 , , T 11 {\displaystyle T_{0},\ldots ,T_{11}} be the transformations which send a point ( x , y , z ) {\displaystyle (x,y,z)} to the even permutations of ( ± x , ± y , ± z ) {\displaystyle (\pm x,\pm y,\pm z)} with an even number of minus signs. The transformations T i {\displaystyle T_{i}} constitute the group of rotational symmetries of a regular tetrahedron. The transformations T i M j {\displaystyle T_{i}M^{j}} ( i = 0 , , 11 {\displaystyle (i=0,\ldots ,11} , j = 0 , , 4 ) {\displaystyle j=0,\ldots ,4)} constitute the group of rotational symmetries of a regular icosahedron. Then the 60 points T i M j p {\displaystyle T_{i}M^{j}p} are the vertices of a great snub icosahedron. The edge length equals 2 ξ 1 ξ {\displaystyle -2\xi {\sqrt {1-\xi }}} , the circumradius equals ξ 2 ξ {\displaystyle -\xi {\sqrt {2-\xi }}} , and the midradius equals ξ {\displaystyle -\xi } .

For a great snub icosidodecahedron whose edge length is 1, the circumradius is

R = 1 2 2 ξ 1 ξ 0.5800015046400155 {\displaystyle R={\frac {1}{2}}{\sqrt {\frac {2-\xi }{1-\xi }}}\approx 0.5800015046400155}

Its midradius is

r = 1 2 1 1 ξ 0.2939417380786233 {\displaystyle r={\frac {1}{2}}{\sqrt {\frac {1}{1-\xi }}}\approx 0.2939417380786233}

The four positive real roots of the sextic in R, 4096 R 12 27648 R 10 + 47104 R 8 35776 R 6 + 13872 R 4 2696 R 2 + 209 = 0 {\displaystyle 4096R^{12}-27648R^{10}+47104R^{8}-35776R^{6}+13872R^{4}-2696R^{2}+209=0} are the circumradii of the snub dodecahedron (U29), great snub icosidodecahedron (U57), great inverted snub icosidodecahedron (U69), and great retrosnub icosidodecahedron (U74).

See also

References

  1. Maeder, Roman. "74: great retrosnub icosidodecahedron". MathConsult.

External links


Stub icon

This polyhedron-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: