Misplaced Pages

Hall's universal group

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In algebra, Hall's universal group is a countable locally finite group, say U, which is uniquely characterized by the following properties.

It was defined by Philip Hall in 1959, and has the universal property that all countable locally finite groups embed into it.

Hall's universal group is the Fraïssé limit of the class of all finite groups.

Construction

Take any group Γ 0 {\displaystyle \Gamma _{0}} of order 3 {\displaystyle \geq 3} . Denote by Γ 1 {\displaystyle \Gamma _{1}} the group S Γ 0 {\displaystyle S_{\Gamma _{0}}} of permutations of elements of Γ 0 {\displaystyle \Gamma _{0}} , by Γ 2 {\displaystyle \Gamma _{2}} the group

S Γ 1 = S S Γ 0 {\displaystyle S_{\Gamma _{1}}=S_{S_{\Gamma _{0}}}\,}

and so on. Since a group acts faithfully on itself by permutations

x g x {\displaystyle x\mapsto gx\,}

according to Cayley's theorem, this gives a chain of monomorphisms

Γ 0 Γ 1 Γ 2 . {\displaystyle \Gamma _{0}\hookrightarrow \Gamma _{1}\hookrightarrow \Gamma _{2}\hookrightarrow \cdots .\,}

A direct limit (that is, a union) of all Γ i {\displaystyle \Gamma _{i}} is Hall's universal group U.

Indeed, U then contains a symmetric group of arbitrarily large order, and any group admits a monomorphism to a group of permutations, as explained above. Let G be a finite group admitting two embeddings to U. Since U is a direct limit and G is finite, the images of these two embeddings belong to Γ i U {\displaystyle \Gamma _{i}\subset U} . The group Γ i + 1 = S Γ i {\displaystyle \Gamma _{i+1}=S_{\Gamma _{i}}} acts on Γ i {\displaystyle \Gamma _{i}} by permutations, and conjugates all possible embeddings G Γ i {\displaystyle G\hookrightarrow \Gamma _{i}} .

References

  1. ^ Hall, P. Some constructions for locally finite groups. J. London Math. Soc. 34 (1959) 305--319. MR162845
Categories: