Misplaced Pages

Hexaoctagonal tiling

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
hexaoctagonal tiling
Hexaoctagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration (6.8)
Schläfli symbol r{8,6} or { 8 6 } {\displaystyle {\begin{Bmatrix}8\\6\end{Bmatrix}}}
Wythoff symbol 2 | 8 6
Coxeter diagram
Symmetry group , (*862)
Dual Order-8-6 quasiregular rhombic tiling
Properties Vertex-transitive edge-transitive

In geometry, the hexaoctagonal tiling is a uniform tiling of the hyperbolic plane.

Constructions

There are four uniform constructions of this tiling, three of them as constructed by mirror removal from the kaleidoscope. Removing the mirror between the order 2 and 4 points, , gives , (*883). Removing the mirror between the order 2 and 8 points, , gives , (*664). Removing two mirrors as , leaves remaining mirrors (*4343).

Four uniform constructions of 6.8.6.8
Uniform
Coloring
Symmetry
(*862)
=
(*883)
=
(*664)

(*4343)
Symbol r{8,6} r{(8,3,8)} r{(6,4,6)}
Coxeter
diagram
= = =

Symmetry

The dual tiling has face configuration V6.8.6.8, and represents the fundamental domains of a quadrilateral kaleidoscope, orbifold (*4343), shown here. Adding a 2-fold gyration point at the center of each rhombi defines a (2*43) orbifold. These are subsymmetries of .


, (*4343)

, (2*43)

Related polyhedra and tiling

Uniform octagonal/hexagonal tilings
Symmetry: , (*862)
{8,6} t{8,6}
r{8,6} 2t{8,6}=t{6,8} 2r{8,6}={6,8} rr{8,6} tr{8,6}
Uniform duals
V8 V6.16.16 V(6.8) V8.12.12 V6 V4.6.4.8 V4.12.16
Alternations

(*466)

(8*3)

(*4232)

(6*4)

(*883)

(2*43)

(862)
h{8,6} s{8,6} hr{8,6} s{6,8} h{6,8} hrr{8,6} sr{8,6}
Alternation duals
V(4.6) V3.3.8.3.8.3 V(3.4.4.4) V3.4.3.4.3.6 V(3.8) V3.4 V3.3.6.3.8
Symmetry mutation of quasiregular tilings: (6.n)
Symmetry
*6n2
Euclidean Compact hyperbolic Paracompact Noncompact
*632
*642
*652
*662
*762
*862
...
*∞62
 
Quasiregular
figures
configuration

6.3.6.3

6.4.6.4

6.5.6.5

6.6.6.6

6.7.6.7

6.8.6.8

6.∞.6.∞

6.∞.6.∞
Dual figures
Rhombic
figures
configuration

V6.3.6.3

V6.4.6.4

V6.5.6.5

V6.6.6.6

V6.7.6.7

V6.8.6.8

V6.∞.6.∞
Dimensional family of quasiregular polyhedra and tilings: (8.n)
Symmetry
*8n2
Hyperbolic... Paracompact Noncompact
*832
*842
*852
*862
*872
*882
...
*∞82
 
Coxeter
Quasiregular
figures
configuration

3.8.3.8

4.8.4.8

8.5.8.5

8.6.8.6

8.7.8.7

8.8.8.8

8.∞.8.∞
 
8.∞.8.∞

See also

References

External links

Tessellation
Periodic


Aperiodic
Other
By vertex type
Spherical
Regular
Semi-
regular
Hyper-
bolic
Categories:
Hexaoctagonal tiling Add topic