Misplaced Pages

Joseph Swan

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
British physicist and inventor (1828–1914) For other people named Joseph Swan, see Joseph Swan (disambiguation).

SirJoseph SwanFRS
Photograph of Swan, circa 1900
BornJoseph Wilson Swan
(1828-10-31)31 October 1828
Bishopwearmouth, Sunderland, Tyne And Wear, England
Died27 May 1914(1914-05-27) (aged 85)
Warlingham, Surrey, England
NationalityBritish
Known forIncandescent light bulb
Photographic process
AwardsHughes Medal (1904)
Albert Medal (1906)
Scientific career
FieldsPhysics, Chemistry

Sir Joseph Wilson Swan FRS (31 October 1828 – 27 May 1914) was an English physicist, chemist, and inventor. He is known as an independent early developer of a successful incandescent light bulb, and is the person responsible for developing and supplying the first incandescent lights used to illuminate homes and public buildings, including the Savoy Theatre, London, in 1881.

In 1904, Swan was knighted by King Edward VII, awarded the Royal Society's Hughes Medal, and was made an honorary member of the Pharmaceutical Society. He had received the highest decoration in France, the Legion of Honour, when he visited the 1881 International Exposition of Electricity, Paris. The exhibition included displays of his inventions, and the city was lit with his electric lighting.

Early life

Joseph Wilson Swan was born in 1828 at Pallion Hall in Pallion, in the Parish of Bishopwearmouth, Sunderland, County Durham. His parents were John Swan and Isabella Cameron.

Swan was apprenticed for six years to a Sunderland firm of pharmacists/druggists, Hudson and Osbaldiston. However, it is not known whether Swan completed his six-year apprenticeship, as both partners subsequently died. He was said to have had an enquiring mind, even as a child. He augmented his education with a fascination for his surroundings, the industry of the area, and reading at Sunderland Library. He attended lectures at the Sunderland Atheneum.

Swan subsequently joined Mawson's, a firm of manufacturing chemists in Newcastle upon Tyne, started in the year of Swan's birth by John Mawson (9 September 1819 – 17 December 1867), the husband of his sister, Elizabeth Swan (22 November 1822 – 2 August 1905). In 1846, Swan was offered a partnership at Mawson's. This company subsequently existed as Mawson, Swan, and Morgan until 1973, formerly located on Grey Street in Newcastle upon Tyne, near Grey's Monument. The premises, now occupied by fashion retailer END., can be identified by a line of Victorian-style electric street lamps in front of the store on Grey Street.

Swan lived at Underhill, Low Fell, Gateshead, a large house on Kells Lane North, where he conducted most of his experiments in the large conservatory. The house was later converted into Beaconsfield School, a private fee-paying grant-aided co-educational grammar school. Students there could still find examples of Swan's original electrical fittings.

Electric light

Carbon filament lamp (E27 socket, 220 volts, approx. 30 watts, left side: running with 100 volts)

In 1850, Swan began working on a light bulb using carbonised paper filaments in an evacuated glass bulb. By 1860, he was able to demonstrate a working device, but the lack of a good vacuum, and of an adequate electric source, resulted in an inefficient light bulb with a short life. In August 1863 he presented his own design for a vacuum pump to a meeting of the British Association for the Advancement of Science. The design used mercury falling through a tube to trap air from the system to be evacuated. Swan's design was similar in construction to the Sprengel pump and predates Herman Sprengel's research by two years. Furthermore, it is notable that Sprengel conducted his research while visiting London, and was probably aware of the annual reports of the British Association for the Advancement of Science. Nonetheless, Joseph Swan and Thomas Edison are later reported to have used the Sprengel pump to evacuate their carbon filament lamps.

In 1875, Swan returned to consider the problem of the light bulb with the aid of a better vacuum and a carbonised thread as a filament. The most significant feature of Swan's improved lamp was that there was little residual oxygen in the vacuum tube to ignite the filament, thus allowing the filament to glow almost white-hot without catching fire. However, his filament had low resistance, thus needing heavy copper wires to supply it.

Swan first publicly demonstrated his incandescent carbon lamp at a lecture for the Newcastle upon Tyne Chemical Society on 18 December 1878. However, after burning with a bright light for some minutes in his laboratory, the lamp broke down owing to excessive current. On 17 January 1879 this lecture was successfully repeated with the lamp shown in actual operation; Swan had solved the problem of incandescent electric lighting by means of a vacuum lamp. On 3 February 1879 he publicly demonstrated a working lamp to an audience of over seven hundred people in the lecture theatre of the Literary and Philosophical Society of Newcastle upon Tyne, Sir William Armstrong of Cragside presiding. Swan turned his attention to producing a better carbon filament, and the means of attaching its ends. He devised a method of treating cotton to produce "parchmentised thread", and obtained British Patent 4933 on 27 November 1880. From that time he began installing light bulbs in homes and landmarks in England.

Blue plaque commemorates Swan's invention of the electric light bulb and Underhill as the first house in the world to have electric lighting installed

His house, Underhill, Low Fell, Gateshead, was the world's first to have working light bulbs installed. The Lit & Phil Library in Westgate Road, Newcastle, was the first public room lit by electric light during a lecture by Swan on 20 October 1880. In 1881 he founded his own company, The Swan Electric Light Company, and started commercial production.

The Savoy, a state-of-the-art theatre in the City of Westminster, London, was the first public building in the world lit entirely by electricity. Swan supplied about 1,200 incandescent lamps, powered by an 88.3-kilowatt (118.4-horsepower) generator on open land near the theatre. The builder of the Savoy, Richard D'Oyly Carte, explained why he had introduced Swan's electric light: "The greatest drawbacks to the enjoyment of the theatrical performances are, undoubtedly, the foul air and heat which pervade all theatres. As everyone knows, each gas-burner consumes as much oxygen as many people, and causes great heat beside. The incandescent lamps consume no oxygen, and cause no perceptible heat." The first generator proved too small to power the whole building, and though the entire front-of-house was electrically lit, the stage was lit by gas until 28 December 1881. At that performance, Carte stepped on stage and broke a glowing lightbulb before the audience to demonstrate the safety of Swan's new technology. On 29 December 1881, The Times described the electric lighting as visually superior to gaslight.

The first private residence, other than the inventor's, lit by the new incandescent lamp was that of his friend, Sir William Armstrong at Cragside, near Rothbury, Northumberland. Swan personally supervised the installation there in December 1880. Swan had formed "The Swan Electric Light Company Ltd" with a factory at Benwell, Newcastle, and had established the first commercial manufacture of incandescent lightbulbs by the beginning of 1881.

Swan's carbon rod lamp and carbon filament lamp, while functional, were still relatively impractical owing to low resistance (needing very expensive thick copper wiring) and short running life. While searching for a better filament for his light bulb, Swan inadvertently made another advance. In 1881, he developed and patented a process for squeezing nitrocellulose through holes to form conducting fibres. His newly established company (which by merger eventually became the Edison and Swan United Company) used Swan's cellulose filaments in their bulbs. The textile industry has also used this process.

The first ship to use Swan's invention was The City of Richmond, owned by the Inman Line. She was fitted with incandescent lamps in June 1881. The Royal Navy also introduced them to its ships soon after; with HMS Inflexible having the new lamps installed in the same year. An early employment in engineering was during the digging of the Severn Tunnel, where the contractor Thomas Walker installed "20-candlepower lamps" in the temporary pilot tunnels.

Swan was one of the early developers of the electric safety lamp for miners, exhibiting his first in Newcastle upon Tyne at the North of England Institute of Mining and Mechanical Engineers on 14 May 1881. This required a wired supply, so the following year, he presented one with a battery and other improved versions followed. By 1886, a lamp with better light output than a flame safety lamp was in production by the Edison-Swan Company. However, it suffered from problems of reliability and was not a success. It took development by others over the next 20 years or so before effective electric lamps were in common use.

Conjunction with Edison

Edison & Swan United Electric Light Company, otherwise known as "Ediswan"

In what are considered to be independent lines of inquiry, Swan's incandescent electric lamp was developed at the same time that Thomas Edison was working on his incandescent lamp, with Swan's first successful lamp and Edison's lamp both patented in 1880. Edison's goal in developing his lamp was for it to be used as one part of a much larger system: a long-life high-resistance lamp that could be connected in parallel to work economically with the large-scale electric-lighting utility he was creating. Swan's original lamp design, with its low resistance (the lamp could be used only in series) and short life span, was not suited for such an application. Swan's strong patents in Great Britain led, in 1883, to the two competing companies merging to exploit both Swan's and Edison's inventions, with the establishment of the Edison & Swan United Electric Light Company. Known commonly as "Ediswan", the company sold lamps made with a cellulose filament that Swan had invented in 1881, while the Edison Company continued using bamboo filaments outside of Britain. In 1892, General Electric (GE) began exploiting Swan's patents to produce cellulose filaments, until they were replaced in 1904 by a GE developed "General Electric Metallized" (GEM) baked cellulose filaments.

In 1886, Ediswan moved production to a former jute mill at Ponders End, North London. In 1916, Ediswan set up the UK's first radio thermionic valve factory at Ponders End. This area, with nearby Brimsdown subsequently developed as a centre for the manufacture of thermionic valves, cathode-ray tubes, etc., and nearby parts of Enfield became an important centre of the electronics industry for much of the 20th century. Ediswan became part of British Thomson-Houston and Associated Electrical Industries (AEI) in the late 1920s.

Photography

Stone tablet of Sir Joseph Wilson Swan in Pilgrim Street, Newcastle upon Tyne, on former Electricity Board building

When working with wet photographic plates, Swan noticed that heat increased the sensitivity of the silver bromide emulsion. By 1871, he had devised a method of using dry plates, and substituting nitrocellulose plastic for glass plates, thus initiating the age of convenience in photography. Eight years later, he patented bromide paper, developments of which are still used for black-and-white photographic prints.

In 1864, Swan patented the transfer process for making carbon prints, a permanent photographic process. By adding the transfer step, Swan was able easily to make photographs with a full tonal range.

Honours

In 1894, Swan was elected a Fellow of the Royal Society (FRS), and in 1898 he was elected president of the Institution of Electrical Engineers; at the time, Swan was one of its three honorary members, the other two being Lord Kelvin and Henry Wilde. In September 1901, he was awarded the honorary degree of Doctor of Science (D.Sc.) from Durham University. He also served as president of the Society of Chemical Industry from 1900-1901, and in 1903 he was chosen first president of the Faraday Society. In 1904, he was knighted, awarded the Royal Society's Hughes Medal, and made an honorary member of the Pharmaceutical Society. In 1906, he received the Albert medal of the Royal Society of Arts.

In 1945, the London Power Company commemorated Swan by naming a new 1,554 GRT coastal collier SS Sir Joseph Swan.

Personal life

Swan married firstly Frances "Fanny" White, third daughter of William White, of Liverpool, at Camberwell Chapel, London, on 31 July 1862. They had three surviving children: Cameron, Mary Edmonds, and Joseph Henry. Frances died on 9 January 1868 and he married secondly Hannah White, the younger sister of Frances, at Neuchâtel, Switzerland, on 3 October 1871. They had five children: Hilda, Frances Isobel, Kenneth Rayden, Percival, and Dorothy. Sir Kenneth Rayden Swan was a QC and an acknowledged authority on patent law.

Swan died in 1914 at his home in Overhill, Warlingham, Surrey. The funeral took place at All Saints' Church, Warlingham, on 30 May 1914, with interment taking place in the churchyard. Mourners included representatives of the Institution of Electrical Engineers, the Institution of Mechanical Engineers, and the Royal Society.

References

  1. ^ Kenneth E. Hendrickson III, ed. (2014). The Encyclopedia of the Industrial Revolution in World History. Vol. 3. Rowman & Littlefield. p. 564. ISBN 978-0810888876. OCLC 869343342.
  2. ^ Williams, Hywel (2005). Cassell's Chronology of World History. London: Weidenfeld & Nicolson. pp. 434–435. ISBN 0-304-35730-8.
  3. Shaw, Wm. A. (1971). The Knights of England: A Complete Record from the Earliest Time to the Present Day of the Knights of All the Orders of Chivalry in England, Scotland, and Ireland, and of the Knights Bachelors. Vol. 2. Baltimore: Genealogical Publishing Company. p. 419. OCLC 247620448.
  4. ^ "Pharmacy — the mother of invention? — Sir Joseph Swan (1828–1914)". RPSGB.org.uk. Royal Pharmaceutical Society of Great Britain (RPSGB). Archived from the original on 24 September 2006. Retrieved 11 January 2010. Swan made groundbreaking discoveries in the fields of electric lighting and photography. He had already received the Legion of Honour when he visited an international exhibition in Paris in 1881. The exhibition included exhibits of his inventions, and the city was lit with electric light, thanks to Swan's invention.
  5. ^ Davidson, Michael W., and The Florida State University. "Molecular Expressions. Science, optics and you. Pioneers in optics. Joseph Swan (1828–1914)." Last modification 26 February 2004. Retrieved 16 November 2009
  6. Plumley, Jon. "Joseph Swan: Biography". www.kstc.co.uk. Archived from the original on 6 May 2017. Retrieved 10 January 2018.
  7. Newton, Douglas (26 October 1978). "Light and likeness". New Scientist. Retrieved 30 December 2010.
  8. ^ Electrical times, Volume 145 p. 220. Retrieved 30 December 2010
  9. ^ "Death Of Sir Joseph Swan". The Times. No. 40535. 28 May 1914. p. 12. Gale CS202441404. Retrieved 4 June 2021.
  10. British Association for the Advancement of Science, Notices and Abstracts of Miscellaneous Communications to the Sections (1863). "On a Mercurial Air-Pump by J. W. Swan.". Report of the British Association for the Advancement of Science. London: John Murray. pp. 26. OCLC 1052544488.
  11. Sprengel, Hermann (1865). "III. Researches on the vacuum". Journal of the Chemical Society. 18: 9–21.
  12. Thompson, Silvanus P. (1888). The development of the mercurial air-pump. London: E. & F.N. Spon. pp. 19.
  13. Friedel, Robert & Israel, Paul (2010). Edison's Electric Light: The Art of Invention (Revised ed.). The Johns Hopkins University Press. p. 56. ISBN 978-0-8018-9482-4. Retrieved 3 July 2018.
  14. ^ "Lighting A Revolution: Joseph W. Swan". americanhistory.si.edu. Retrieved 10 January 2018.
  15. Swan K. R. Sir Joseph Swan and the Invention of the incandescent electric lamp. London: Longmans, Green and Co., 1946 pp. 21–25
  16. "Tale of tragedy behind the triumphs of Joseph Swan". The Journal. 11 December 2016. Archived from the original on 20 December 2016. Retrieved 11 December 2016.
  17. Glover, Andrew (8 February 2011). "Alexander Armstrong in appeal to save Lit and Phil". The Journal. Archived from the original on 15 February 2011. Retrieved 8 February 2011. The society's lecture theatre was the first public room to be lit by electric light, during a lecture by Sir Joseph Swan on October 20, 1880.
  18. History in pictures – The Lit & Phil, BBC. Retrieved 8 August 2011
  19. "Ideafinder.com, Light Bulb History, accessed 17 July 2012". Archived from the original on 4 August 2012. Retrieved 17 July 2012.
  20. Chirnside, R.C. Sir Joseph Wilson Swan FRS Newcastle upon Tyne: Literary and Philosophical Society of Newcastle upon Tyne 1979
  21. Burgess, Michael. "Richard D'Oyly Carte", The Savoyard, January 1975, pp. 7–11
  22. "The Savoy Theatre", The Times, 3 October 1881
  23. Gooday, Graeme (2008). Domesticating electricity: technology, uncertainty and gender, 1880–1914. Pickering & Chatto. p. 107. ISBN 978-1851969753. OCLC 222542339. Retrieved 30 November 2010.
  24. "Richard D'Oyly Carte" Archived 13 April 2009 at the Wayback Machine, at the Lyric Opera San Diego website, June 2009
  25. Description of lightbulb experiment in The Times, 29 December 1881
  26. Ganapati, Priya. "Dec. 18, 1878: Let There Be Light — Electric Light". Wired. Retrieved 10 January 2018.
  27. "Joseph Wilson Swan". Timmonetk. Retrieved 21 July 2010.
  28. ^ Sir Josepth Swan and the Invention of the Incandescent Electric Lamp by Kenneth R. Swan 1948
  29. Walker, Thomas A (1888). The Severn Tunnel Its Construction and Difficulties. London: Richard Bentley and Son. p. 73.
  30. Swan. J.W. Swan's electric light Transactions, North of England Institute of Mining and Mechanical Engineers 30, 1881, 149–159
  31. Swan, J.W. On an electric safety lamp, with portable secondary battery Transactions, North of England Institute of Mining and Mechanical Engineers 31 1881-2, 117–9
  32. Swan, J.W. On an improved electric safety lamp for miners Transactions, North of England Institute of Mining and Mechanical Engineers 36 1886-7, 3–11
  33. Discussion on electric lamps Transactions, North of England Institute of Mining and Mechanical Engineers 36 1886-7 55 – 59
  34. Jones, A. V.; Tarkenter, R. P. (1993). Electrical technology in mining: the dawn of a new age. London: Peter Peregrinus Ltd. ISBN 978-0863411991. OCLC 28220773.
  35. ^ Maury Klein, The Power Makers: Steam, Electricity, and the Men Who Invented Modern America, Bloomsbury Publishing USA — 2010, Chapter 9 — The Cowbird, The Plugger, and the Dreamer
  36. "Thomas Edison's Patent Application for the Light Bulb (1880)". National Archives. 8 September 2021. Retrieved 4 June 2023.
  37. David O. Whitten, Bessie Emrick Whitten, Handbook of American Business History: Manufacturing, Greenwood Publishing Group, 1990, pages 315-316
  38. Incandescent Lamps, History of the Incandescent Light (1802 — today), EdisonTechCenter.org Archived 14 March 2013 at the Wayback Machine
  39. Pam, D. (1977),The New Enfield: Stories of Enfield Edmonton and Southgate, a Jubilee History, London Borough of Enfield Libraries, Arts & Entertainment Dept
  40. Lewis J.(2001), London's Lea Valley: more secrets revealed, Phillimore, ISBN 1-86077-190-4
  41. "Swan, Sir Joseph Wilson: certificate of election to the Royal Society". Royal Society Archives. Royal Society. 1894. EC/1894/20. Retrieved 11 April 2021.
  42. "University intelligence". The Times. No. 36573. London. 30 September 1901. p. 4.
  43. "SCI Presidents".
  44. Shaw, Wm. A. (1971). The Knights of England: A Complete Record from the Earliest Time to the Present Day of the Knights of All the Orders of Chivalry in England, Scotland, and Ireland, and of the Knights Bachelors. Vol. 2. Baltimore: Genealogical Publishing Company. p. 419. OCLC 247620448.
  45. Covington, Edward J. "Sir Joseph Wilson Swan". LampTech: Museum of Electric Lamp Technology. Retrieved 3 June 2023.
  46. Anderson, James B (2008). Sommerville, Iain (ed.). "Ships built by the Burntisland Shipbuilding Company Ltd: arranged by date of launch". Welcome to Burntisland. Iain Sommerville. Retrieved 16 June 2011.
  47. "Marriages". Newcastle Journal. 12 August 1862. p. 3. Retrieved 11 April 2020 – via British Newspaper Archive.
  48. "Deaths". Newcastle Guardian and Tyne Mercury. 11 January 1868. p. 8. Retrieved 11 April 2021 – via British Newspaper Archive.
  49. "Marriages". Newcastle Courant. 13 October 1871. p. 8. Retrieved 11 April 2021 – via British Newspaper Archive.
  50. "Obituary. Sir Kenneth Swan. Authority on Patents Law". The Times. No. 58913. 20 October 1973. p. 18. Gale CS322140495. Retrieved 4 June 2021.
  51. "The Late Sir Joseph W. Swan". Newcastle Journal. 1 June 1914. p. 2. Retrieved 11 April 2021 – via British Newspaper Archive.
  52. "Funerals. Sir J. W. Swan". The Times. No. 40538. 1 June 1914. p. 11. Gale CS185402049. Retrieved 4 June 2021.

Further reading

External links

Categories: