Misplaced Pages

Kepler-22

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Kepler 22) Star in the constellation Cygnus
Kepler-22
Observation data
Epoch J2000      Equinox J2000
Constellation Cygnus
Right ascension 19 16 52.19023
Declination +47° 53′ 03.9486″
Apparent magnitude (V) 11.664
Characteristics
Spectral type G5V
Astrometry
Radial velocity (Rv)−4.50±0.51 km/s
Proper motion (μ) RA: −39.589 mas/yr
Dec.: −66.773 mas/yr
Parallax (π)5.0627 ± 0.0110 mas
Distance644 ± 1 ly
(197.5 ± 0.4 pc)
Absolute magnitude (MV)~5.27
Absolute bolometric
magnitude
 (Mbol)
~4.98
Details
Mass0.857+0.051
−0.043 M
Radius0.869±0.011 R
Luminosity (bolometric)0.79 ± 0.04 L
Luminosity (visual, LV)~0.67 L
Temperature5596±61 K
Metallicity −0.255±0.065 dex
Rotational velocity (v sin i)0.6 ± 1.0 km/s
Age7.0+4.0
−4.2 Gyr
Other designations
Gaia DR2 2127941757262806656, KOI-87, KIC 10593626, GSC 03546-02301, 2MASS J19165219+4753040
Database references
SIMBADdata
Exoplanet Archivedata
KICdata
Extrasolar Planets
Encyclopaedia
data

Kepler-22 is a Sun-like star in the northern constellation of Cygnus, the swan, that is orbited by at least 1 planet found to be unequivocally within the star's habitable zone. It is located at the celestial coordinates: Right Ascension 19 16 52.2, Declination +47° 53′ 3.9″. With an apparent visual magnitude of 11.7, this star is too faint to be seen with the naked eye. It can be viewed with a telescope having an aperture of at least 4 in (10 cm). The estimated distance to Kepler-22 is 644 light-years (197 parsecs).

Stellar characteristics

Kepler-22 is slightly smaller and cooler than the Sun, with a lower abundance of elements having more mass than helium. It has a spectral type of G5V, while the luminosity class remains undetermined. This star is radiating 79% of the Sun's luminosity from its outer atmosphere at an effective temperature of 5,518 K, giving it the yellow-hued glow of a G-type star. A projected rotational velocity of 0.6 km/s suggests it has a long period of rotation. No flare activity has been detected.

Planetary system

The Kepler-22 planetary system
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b <9.1 M🜨 0.812+0.011
−0.013
289.863876±0.000013 <0.72 89.764+0.025
−0.042°
2.10±0.12 R🜨

On December 5, 2011, scientists from the Kepler mission announced that an exoplanet, Kepler-22b, had been discovered orbiting in the star's habitable zone by NASA's Kepler spacecraft. This was significant in that it was the first relatively small exoplanet (about 2.4 R🜨) confirmed to be orbiting within a star's habitable zone. Its size suggests that it is not likely to be a rocky planet and is more likely to be a mini-Neptune or ocean world; while its mass has not been measured, radial velocity observations have set an upper limit of 9.1 ME as of 2023.

References

  1. "Cygnus – constellation boundary", The Constellations, International Astronomical Union, retrieved 2011-12-15
  2. ^ Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.
  3. ^ "Kepler-22b". Archived from the original on 2017-03-31. Retrieved 2011-12-07.
  4. ^ Schneider, Jean, "Star: Kepler-22", Extrasolar Planets Encyclopaedia, retrieved 2020-12-17
  5. ^ Bonomo, A. S.; Dumusque, X.; et al. (April 2023). "Cold Jupiters and improved masses in 38 Kepler and K2 small-planet systems from 3661 high-precision HARPS-N radial velocities. No excess of cold Jupiters in small-planet systems". Astronomy & Astrophysics. arXiv:2304.05773. Bibcode:2023A&A...677A..33B. doi:10.1051/0004-6361/202346211. S2CID 258078829.
  6. "GSC 03546-02301 -- Star", SIMBAD, Centre de Données astronomiques de Strasbourg, retrieved 2011-12-08
  7. Sherrod, P. Clay; Koed, Thomas L. (2003), A Complete Manual of Amateur Astronomy: Tools and Techniques for Astronomical Observations, Astronomy Series, Courier Dover Publications, p. 9, ISBN 0486428206
  8. "Kepler Confirms First Planet in Habitable Zone of Sun-Like Star". Universe Today. 2011-12-05.
  9. "The Colour of Stars", Australia Telescope, Outreach and Education, Commonwealth Scientific and Industrial Research Organisation, December 21, 2004, archived from the original on March 18, 2012, retrieved 2012-01-16
  10. Armstrong, D. J.; Pugh, C. E.; Broomhall, A.-M.; Brown, D. J. A.; Lund, M. N.; Osborn, H. P.; Pollacco, D. L. (2015), "The Host Stars of Kepler's Habitable Exoplanets: Superflares, Rotation and Activity", Monthly Notices of the Royal Astronomical Society, 455 (3): 3110–3125, arXiv:1511.05306, doi:10.1093/mnras/stv2419, S2CID 16265095
  11. Borucki, William J.; Koch, David G.; et al. (February 2012). "Kepler-22b: A 2.4 Earth-radius Planet in the Habitable Zone of a Sun-like Star". The Astrophysical Journal. 745 (2): 120. arXiv:1112.1640. Bibcode:2012ApJ...745..120B. doi:10.1088/0004-637X/745/2/120. S2CID 50813889.
  12. ^ Boyle, Rebecca (December 5, 2011). "Kepler Team Confirms First Earth-like planet in a habitable zone, And Finds 1,094 More Worlds". Popular Science. Retrieved December 5, 2011.
  13. "NASA Telescope Confirms Alien Planet in Habitable Zone". Space.com. 2011-12-05.


Constellation of Cygnus
Stars
Bayer
Flamsteed
Variable
HR
HD
Gliese
Kepler
WR
Other
Star
clusters
Association
Open
Molecular
clouds
Nebulae
Dark
H II
Planetary
WR
SNR
Galaxies
NGC
Other
Exoplanets
Kepler
Other
Exomoons
Kepler
Categories:
Kepler-22 Add topic