Misplaced Pages

Bluegill

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Lepomis macrochirus) Species of fish For the exoatmospheric nuclear test see Bluegill (nuclear test). For the submarine, see USS Bluegill.

Bluegill
Conservation status

Least Concern  (IUCN 3.1)
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Actinopterygii
Order: Centrarchiformes
Family: Centrarchidae
Genus: Lepomis
Species: L. macrochirus
Binomial name
Lepomis macrochirus
Rafinesque, 1810
Synonyms

Lepomis purpurescens Cope, 1870

The bluegill (Lepomis macrochirus), sometimes referred to as "bream", "brim", "sunny", or, as is common in Texas, "copper nose", is a species of North American freshwater fish, native to and commonly found in streams, rivers, lakes, ponds and wetlands east of the Rocky Mountains. It is the type species of the genus Lepomis (true sunfish), from the family Centrarchidae (sunfishes, crappies and black basses) in the order Perciformes (perch-like fish).

Bluegills can grow up to 16 in (41 cm) long and about 4+1⁄2 lb (2.0 kg). While their color can vary from population to population, they typically have a very distinctive coloring, with deep blue and purple on the face and gill cover, dark olive-colored bands down the side, and a fiery orange to yellow belly. They are omnivorous and will consume anything they can fit in their mouth, but mostly feed on small aquatic insects and baitfishes. The fish are important prey for bass, other larger sunfish, northern pike and muskellunge, walleye, trout, herons, kingfishers, snapping turtles and otters, and play a key role within the food chain of its freshwater ecosystem.

A popular panfish among anglers, bluegill usually hide around and inside old tree stumps in swamps and other underwater structures (e.g. snags), and can live in either deep or very shallow water. Bluegills also like to find shelter among aquatic plants and in the shade of trees along banks, and will often move from one cover to another depending on the time of day or season.

Description

The bluegill is noted for the large black appendage (the "ear") on each side of the posterior edge of the gill covers as well as the base of the dorsal fin. The sides of its head and chin are commonly a dark shade of blue, hence the name "bluegill". The precise coloration will vary due to the presence of neurally controlled chromatophores under the skin. The fish usually displays 5–9 vertical bars on the sides of its body immediately after being caught as part of its threat display. It typically has a yellowish breast and abdomen, with the breast of the breeding male being a bright orange. The bluegill has three anal fin spines, ten to 12 anal fin rays, six to 13 dorsal fin spines, 11 to 12 dorsal rays, and 12 to 13 pectoral rays. They are characterized by their deep, flattened bodies. They have a terminal mouth, ctenoid scales, and a lateral line that is arched upward anteriorly.

The bluegill typically ranges in size from about 4 to 12 inches (100–300 mm), and reaches a maximum size just over 16 inches (410 mm). The largest bluegill ever caught was 4 lb 12 oz (2.2 kg) in 1950.

The bluegill is most closely related to the orangespotted sunfish and the redear sunfish, but different in a distinct spot at or near the base of the soft dorsal fin.

Potential subspecies

Bluegills are sometimes split into three subspecies, although their validity is contested. This includes the northern bluegill (L. m. macrochirus), the coppernose bluegill (L. m. purpurascens), and the southwestern bluegill (L. m. speciosus).

Northern bluegill, in MichiganCoppernose bluegill, in Florida

Distribution and habitat

At the University of Mississippi Field Station
Bluegill caught from Lake Lanier

The bluegill occurs naturally in the United States east of the Rocky Mountains from coastal Virginia to Florida, west to Texas and northern Mexico, and north to western Minnesota, New York and southeastern Ontario. They have been introduced widely in North America and Europe, South Africa, Zimbabwe, Asia, South America, and Oceania. Bluegills have also been found in the Chesapeake Bay, indicating they can tolerate up to 1.8% salinity.

In some locations where they have been transplanted, they are considered pests: trade in the species is prohibited in Germany and Japan. In the case of Japan, bluegills were presented to the then-crown prince, Akihito, in 1960 as a gift by Richard J. Daley, mayor of Chicago. The prince, in turn, donated the fish to fishery research agencies in Japan, from which they escaped and became an invasive species that wreaked havoc with native species, especially in Lake Biwa. Akihito has since apologized.

Bluegill live in the shallow waters of many lakes and ponds, along with streams, creeks, and rivers. They prefer water with many aquatic plants, and seclude themselves within or near fallen logs, water weeds or any other structure (natural or manmade) that is under water. They can often be found around weed beds, where they search for food or spawn. In the summer, adults move to deep, open water where they suspend just below the surface and feed on plankton and other aquatic creatures. Bluegill try to spend most of their time in water from 60 to 80 °F (16 to 27 °C), and tend to have a home range of about 320 square feet (30 m) during nonreproductive months. They enjoy heat, but do not like direct sunlight – they typically live in deeper water, but will linger near the water surface in the morning to stay warm. Bluegill are usually found in schools of 10 to 20 fish, and these schools will often include other panfish, such as crappie, pumpkinseeds, and smallmouth bass.

Ecology

Male bluegill

Young bluegills' diet consists of rotifers, copepods, water fleas, and insects (mainly chironomids). The adult diet consists of aquatic insect larvae (mayflies, caddisflies, dragonflies), but can also include terrestrial insects, zooplankton, shrimp, crayfish, leeches, other worms, snails, and other small fish (such as minnows). If food is scarce, bluegill will also feed on aquatic vegetation and algae, and if scarce enough, will even feed on their own eggs or offspring. As bluegill spend a great deal of time near the surface of water, they can also feed on surface bugs. Most bluegills feed during daylight hours, with a feeding peak being observed in the morning and evening (with the major peak occurring in the evening). Feeding location tends to be a balance between food abundance and predator abundance. Bluegill use gill rakers and bands of small teeth to ingest their food. During summer months, bluegills generally consume 3.2 percent of their body weight each day. To capture prey, bluegills use a suction system in which they accelerate water into their mouth. Prey comes in with this water. Only a limited amount of water is able to be suctioned, so the fish must get within 1.75 centimeters of the prey.

In turn, bluegill are prey to many larger species, including largemouth bass, smallmouth bass, striped bass, trout, muskellunge, turtles, northern pike, yellow perch, walleye, catfish, and even larger bluegill. Herons, kingfishers, and otters have also been witnessed catching bluegill in shallow water. However, the shape of the fish makes them hard to swallow. Raccoons are also believed to be among their predators.

Adaptations

Bluegills have the ability to travel and change directions at high speeds by means of synchronized fin movements. They use notched caudal fins, soft dorsal fins, body undulations, and pectoral fins to move forward. Having a notched caudal fin allows them to accelerate quickly. The speed of their forward motion depends on the strength of which they abduct or adduct fins. The flat, slender body of the bluegill lowers water resistance and allows the bluegills to cut effectively through water. The large, flexible pectoral fins allow the fish to decelerate quickly. This superior maneuverability allows the bluegill to forage and escape predators very successfully. Bluegills have a lateral line system, as well as inner ears, that act as receptors for vibration and pressure changes. However, bluegills rely heavily on sight to feed, especially in their foraging. Optimal vision occurs in the daylight hours. The mouth of the bluegill is very small and requires the use of the pharynx to suck in prey.

Standard and backward swimming

The bluegill sunfish relies heavily on the flexibility of its fins to maintain maneuverability in response to fluid forces. The bluegill's segmentation in its pectoral fin rays mitigates the effects of fluid forces on the fish's movement. The bluegill has a variety of unusual adaptations that allow it to navigate different environments. In conditions where the bluegill is deprived of its various sensory abilities, it utilizes its pectoral fins in navigation. If the bluegill's visual input or lateral line input were to be compromised, its pectoral fins are then able to be utilized as mechanosensors through the bending of the fin(s) when the fish comes into contact with its environment. In standard swimming the bluegill sunfish relies on its caudal (tail) fin, dorsal fin, and anal fin. The bluegill's caudal fin muscles are important in the fish's slow swimming and also important in the beginning stages of the fish increasing its swimming speed. The dorsal and anal fins are two types of median fins that work in parallel to balance torque during steady swimming.

When swimming backwards, the bluegill utilizes a plethora of fin muscles located in various parts of its body. Backward swimming in the bluegill is more complex than steady swimming, as it is not just the reversal of forward swimming. The fish utilizes its pectoral fins to provide a rhythmic beat while the dorsal and anal fins produce momentum to drive the fish backwards. The pectoral fins' rhythmic beat is asymmetric and aids the fish's balance in its slow, backward movement.

C-start escape response

The bluegill, amongst a wide array of other fishes, exhibits the C-start escape response, which is generated by large neurons called Mauthner cells. Mauthner cells operate as a command center for the escape response and respond quickly once the neural pathway has been activated by an initial stimulus. The cells trigger a contraction of muscle that bends the fish body into a 'C' to then aid in the propulsion away from a predator. The C-start trajectory is highly variable, allowing the fish to alter its escape response each time. Because of this high variability, predators have a lower chance of learning a successful predation technique to capture the fish. The C-start escape response produces other advantages, including the ability to move quickly and unpredictably to capture prey.

Hydrodynamically, the bluegill exhibits specific flow patterns that accompany its C-start escape response. The caudal (tail) fin is a main source of momentum in typical kinematic models of the C-start escape response but the bluegill draws a majority of its momentum from the body bending associated with the response, as well as its dorsal and anal fins. The dorsal and anal fins' roles as propulsors during escape response suggest that the size of the fins could lead to an evolutionary advantage when escaping predators.

Reproduction and lifestyle

Spawning season for bluegills starts late in May and extends into August. The peak of the spawning season usually occurs in June in waters of 67 to 80 °F (19 to 27 °C). The male bluegills arrive first at the mating site. They will make a spawning bed of six to 12 inches in diameter in shallow water, clustering as many as 50 beds together. The males scoop out these beds in gravel or sand. Males tend to be very protective and chase everything away from their nests, especially other male bluegills. Some bluegills, regardless of their small size, will even attack snorkelers if they approach the edge of the nest. As a female approaches, the male will begin circling and making grunting noises. The motion and sound of the males seem to attract the females. Females are very choosy and will usually pick males with larger bodies and "ears", making larger size a desirable trait for males to have. If the female enters the nest, both the male and female will circle each other, with the male expressing very aggressive behavior toward the female. If the female stays, the pair will enter the nest and come to rest in the middle. With the male in an upright posture, the pair will touch bellies, quiver, and spawn. These actions are repeated at irregular intervals several times in a row. Once the spawning is done, the male will chase the female out of the nest and guard the eggs. The fertilization process is entirely external. The male's sperm combines with the female's eggs in the water. Smaller males will often hide in nearby weeds and dart into the nest as they attempt to fertilize the eggs. They then quickly dart away. The size of the female plays a large role in how many eggs will be produced. A small female can produce as few as 1,000 eggs, and a large, healthy female can produce up to 100,000 eggs. The male continues to watch over the nest until the larvae are able to hatch and swim away on their own. The bluegill generally begins its spawning career at one year of age, but has been found to spawn as early as four months of age under favorable conditions. Anglers find spawning season to be a very successful time to fish for bluegills, as they aggressively attack anything, including a hook, that comes near.

The growth of the bluegill is very rapid in the first three years, but slows considerably once the fish reaches maturity. Many fish reach five to eight years old, and in extreme cases, can live 11 years.

Hybridization with other species

Occasionally a bluegill may spawn with another member of its genus, though this is rare. This tends to happen in bodies of water that are fairly isolated and have a decent population of bluegill in close proximity to another, smaller, population of lepomid species such as green sunfish. Limited nesting grounds can also factor in hybridization causing the females of one species to prefer the nest of another. Bluegill can theoretically hybridize with all other species in the genus Lepomis, though the most common hybrid is the greengill. The hybrid fish are aggressive and have larger mouths than their bluegill parent. These fish also grow faster than other small mouth fish due to its bigger mouth. Greengills or hybrid bluegills are the most efficient in growth and can reach approximately 2 lbs or 0.91 kg in one year.

By artificially stripping and fertilizing eggs, bluegills can hybridize with centrarchid species outside of the genus Lepomis, creating intergeneric hybrids. In this manner, bluegills have been crossed with black crappie (Pomoxis nigromaculatus) and largemouth bass (Micropterus salmoides).

Hybrids× L. cyanellusx L. peltastesx L. gulosusx L. microlophusx L. megalotisx L. gibbosusx L. auritus

Relationship with humans

The bluegill is the state fish of Illinois.

At Lake St. Helen, Michigan, an annual "Blue Gill Festival" is held in July.

Fishing

Bluegill caught in an Alabama pond

Bluegills are popular panfish, caught with live bait such as worms, crickets, grasshoppers, flies, minnows, maggots or small frogs, as well as small shrimp bits, processed bait, bread, corn, other table scraps, small crankbaits, spinners, fake worms, or even a bare hook. They mostly bite on vibrant colors like orange, yellow, green, or red, chiefly at dawn and dusk. They are noted for seeking out underwater vegetation for cover; their natural diet consists largely of crickets, water bugs, larvae, and very small fish. The bluegill itself is also occasionally used as bait for larger game fish species, such as blue catfish, flathead catfish and largemouth bass.

Fishermen are sometimes able to use polarized sunglasses to see through water and find bluegills' spawning beds. Bluegill have a rather bold character; many have no fear of humans, eating food directly dropped into the water, and a population in Canada's Lake Scugog will even allow themselves to be stroked by human observers. Because of their size and the method of cooking them, bluegills are often called panfish.

The IGFA all tackle world record for the species stands at 2.15 kg (4 lb 12 oz) caught from Ketona lake in Alabama in 1950.

Management

Bluegill populations are notably vulnerable to effects of angling and harvest, particularly in size-structure. Large males appear to be especially vulnerable to effects of fishing because of their tendency to guard nests in the center of colonies. Populations with large males are increasingly difficult to find, and are usually only found in remote locations without angling pressure or in more southern regions where growth rates are high. Reduced bag limits appear to show potential for improving size-structure in over-fished populations.

In a 1973 study reported by the EPA, the waterborne administration of 180 ppm of calcium propionate was found to be slightly toxic to bluegill.

Bluegills play an important role in pond and lake management to keep crustacean and insect populations low, as a single bluegill population may eat up to six times its own weight in just one summer. However, certain species of bluegill can become overpopulated and overrun a pond's ecosystem if not managed properly. Pond owners typically control the bluegill population by handfishing and trapping of the fish to control population size.

References

  1. Espinosa Pérez, H.; Lambarri Martínez, C.; NatureServe (2019). "Lepomis macrochirus". IUCN Red List of Threatened Species. 2019: e.T61260A58309944. doi:10.2305/IUCN.UK.2019-2.RLTS.T61260A58309944.en. Retrieved 19 November 2021.
  2. Froese, Rainer; Pauly, Daniel (eds.). "Lepomis macrochirus". FishBase. December 2019 version.
  3. ^ "Bluegill (Lepomis macrochirus)".
  4. ^ Bauer, Diana H. (1980). "Vertical banding evoked by electrical stimulation of the brain in anaesthetized green sunfish, Lepomis cyanellus, and bluegills, Lepomis macrochirus" (PDF). Journal of Experimental Biology. 84: 149–160. doi:10.1242/jeb.84.1.149. PMID 7365413.
  5. ^ Stacey, Peter; Chiszar, David (1975-05-01). "Changes in the darkness of four body features of bluegill sunfish (Lepomis macrochirus Rafinesque) during aggressive encounters". Behavioral Biology. 14 (1): 41–49. doi:10.1016/S0091-6773(75)90302-8. ISSN 0091-6773. PMID 1169938.
  6. ^ Schultz, Ken. Ken Schultz's Field Guide to Freshwater Fish. Hoboken, NJ: J. Wiley & Sons, 2004
  7. Sublette, J. E., M. D. Hatch, and M. Sublette. 1990. University of New Mexico Press, Albuquerque. 393 pp
  8. Ross, S. T. 2001. The Inland Fishes of Mississippi. University Press of Mississippi, Jackson. 624 pp
  9. "Bluegill". Ministry of Natural Resources and Forestry, Government of Ontario. 4 January 2023. Retrieved 25 May 2024.
  10. "Cat-and-mouse game at Chivero". 11 January 2014.
  11. McCurry, Justin (November 26, 2007). "Japan in culinary offensive to stop spread of US fish". The Guardian.
  12. Lee, D. S. 1980. Lepomis macrochirus (Rafinesque 1819), Bluegill. pp. 597 in D. S. Lee, et al. Atlas of North American Freshwater Fishes. N. C. State Mus. Nat. Hist., Raleigh, 854 pp
  13. ^ Paulson, Nicole, and Jay T. Hatch. "Fishes of Minnesota – Bluegill." GC 1112 Welcome. Minnesota Department of Natural Resources, 18 June 2004. Web. 04 May 2011.
  14. ^ "Lepomis macrochirus (Bluegill)".
  15. ^ Parr, Cynthia Sims. "Lepomis macrochirus (Bluegill)". Animal Diversity Web.
  16. ^ Carlander, K.D. 1997. Handbook of freshwater fishery biology. Volume 2. Life history Data on centrarchid fishes of the United States and Canada. Iowa State Univ.Press, Iowa.
  17. Kolehmainen, Seppo E. (1974). "Daily Feeding Rates of Bluegill (Lepomis macrochirus) Determined by a Refined Radioisotope Method". Journal of the Fisheries Research Board of Canada. 31: 67–74. doi:10.1139/f74-010.
  18. ^ Swingle, H. S. and E. V. Smith. 1943. Factors affecting the reproduction of bluegill bream and large black bass in ponds. Ala. Poly-Tech. Inst. Agr. Exp. Stn. Circ. 87:8
  19. Flammang, Brooke (Spring 2013). "Functional Morphology of the Fin Rays of Teleost Fishes" (PDF). Journal of Morphology. 274 (9): 1044–1059. doi:10.1002/jmor.20161. hdl:2027.42/99601. PMID 23720195. S2CID 8199016.
  20. ^ Flammang, Brooke (Spring 2013). "Pectoral fins aid in navigation of a complex environment by bluegill sunfish under sensory deprivation conditions". The Journal of Experimental Biology. 216 (16): 3084–3089. doi:10.1242/jeb.080077. PMID 23885089.
  21. Timmermans, J.-p.; Adriaensen, D. (2007-12-17). "Gastrointestinal mechanosensors: analysis of multiple stimuli may require complex sensors". Neurogastroenterology & Motility. 20 (1): 4–7. doi:10.1111/j.1365-2982.2007.01049.x. ISSN 1350-1925. PMID 18173558. S2CID 11949504.
  22. ^ Flammang, Brooke (Fall 2008). "Caudal fin shape modulation and control during acceleration, braking and backing maneuvers in bluegill sunfish, Lepomis macrochirus". The Journal of Experimental Biology. 212 (2): 277–286. doi:10.1242/jeb.021360. PMID 19112147.
  23. Standen, E. M. (Spring 2005). "Dorsal and anal fin function in bluegill sunfish Lepomis macrochirus: three-dimensional kinematics during propulsion and maneuvering". The Journal of Experimental Biology. 208 (14): 2753–2763. doi:10.1242/jeb.01706. PMID 16000544.
  24. ^ Flammang, Brooke (Fall 2016). "Functional morphology and hydrodynamics of backward swimming in bluegill sunfish, Lepomis macrochirus". Zoology. 119 (5): 414–420. doi:10.1016/j.zool.2016.05.002. PMID 27291816.
  25. Eaton, Robert C. (Summer 1976). "The Mauthner-Initiated Startle Response in Teleost Fish". The Journal of Experimental Biology. 66 (1): 65–81. doi:10.1242/jeb.66.1.65. PMID 870603.
  26. Eaton, Robert C. (Summer 1991). "How Stimulus Direction Determines the Trajectory of the Mauthner-Initiated Escape Response in a Teleost Fish". The Journal of Experimental Biology. 161: 469–487. doi:10.1242/jeb.161.1.469. PMID 1757775.
  27. ^ Sillar, Keith T. (2009). "Quick Guide: Mauthner Cells". Current Biology. 19 (9): 353–355. doi:10.1016/j.cub.2009.02.025. PMID 19439253. S2CID 8381279.
  28. ^ Korn, Henry (Summer 2005). "The Mauthner Cell Half a Century Later: A Neurobiological Model for Decision-Making?". Neuron. 47 (1): 13–28. doi:10.1016/j.neuron.2005.05.019. PMID 15996545. S2CID 2851487.
  29. ^ Tytell, Eric D. (Fall 2008). "Hydrodynamics of the escape response in bluegill sunfish, Lepomis macrochirus". The Journal of Experimental Biology. 211 (21): 3359–3369. doi:10.1242/jeb.020917. PMC 2669901. PMID 18931309.
  30. Sternberg, Dick. Freshwater Gamefish of North America. 1987.
  31. "Greengill (Lepomis cyanellus x Lepomis macrochirus)". Koaw Nature. Retrieved 2021-01-15.
  32. "Hybrid Lepomids - An Introduction". Koaw Nature. Retrieved 2021-01-15.
  33. "How Big Do Hybrid Bluegill Get? (9 Answers You Should Know)". upicefishing.com. Retrieved January 19, 2025.
  34. West, Jerry L.; Hester, F. Eugene (1966). "Intergeneric Hybridization of Centrarchids". Transactions of the American Fisheries Society. 95 (3): 280–288. doi:10.1577/1548-8659(1966)95[280:IHOC]2.0.CO;2. ISSN 1548-8659.
  35. Illinois State Symbols, Department of Natural Resources, archived from the original on 2017-02-17, retrieved 2019-05-22
  36. "bluegillfestival.com". bluegillfestival.com.
  37. "Best Bait for Bluegill – Living in a Fisherman's Bream". 3 March 2016. Retrieved 2019-12-03.
  38. ^ Coble, Daniel W. "Effects of Angling on Bluegill Populations: Management Implications." North American Journal of Fisheries Management 8.3 (1988): 277
  39. "Bluegill Fishing 101". bluegillslayer.com. Retrieved 25 November 2014.
  40. "Fishes of Minnesota: Bluegill Archived June 10, 2011, at the Wayback Machine Minnesota DNR." Minnesota Department of Natural Resources: Minnesota DNR. Web. 04 May 2011.
  41. "Bluegill". igfa.org. IGFA. Retrieved 17 June 2019.
  42. Rypel, Andrew L.; Lyons, John; Griffin, Joanna D. Tober; Simonson, Timothy D. (2016-05-03). "Seventy-Year Retrospective on Size-Structure Changes in the Recreational Fisheries of Wisconsin". Fisheries. 41 (5): 230–243. doi:10.1080/03632415.2016.1160894. ISSN 0363-2415.
  43. Miller, Matthew L. (2015-10-15). "Why Everything You Know About Bluegill Management is Wrong". Cool Green Science. Retrieved 2021-02-16.
  44. Rypel, Andrew L. (2015-03-04). "Effects of a Reduced Daily Bag Limit on Bluegill Size Structure in Wisconsin Lakes". North American Journal of Fisheries Management. 35 (2): 388–397. doi:10.1080/02755947.2014.1001929. ISSN 0275-5947.
  45. "OPP PESTICIDE ECOTOXICITY DATABASE - Details - Pesticide: Calcium propionate". EPA / USDA / NIFA. Archived from the original on 2019-01-23. Retrieved 2019-01-22.
  46. "PERCH TRAP | Best Catching Cloverleaf Style". Reel Texas Outdoors. Retrieved 2024-05-27.
Taxon identifiers
Lepomis macrochirus
Categories:
Bluegill Add topic