(Redirected from Lommel differential equation )
The Lommel differential equation , named after Eugen von Lommel , is an inhomogeneous form of the Bessel differential equation :
z
2
d
2
y
d
z
2
+
z
d
y
d
z
+
(
z
2
−
ν
2
)
y
=
z
μ
+
1
.
{\displaystyle z^{2}{\frac {d^{2}y}{dz^{2}}}+z{\frac {dy}{dz}}+(z^{2}-\nu ^{2})y=z^{\mu +1}.}
Solutions are given by the Lommel functions s μ,ν (z ) and S μ,ν (z ), introduced by Eugen von Lommel (1880 ),
s
μ
,
ν
(
z
)
=
π
2
[
Y
ν
(
z
)
∫
0
z
x
μ
J
ν
(
x
)
d
x
−
J
ν
(
z
)
∫
0
z
x
μ
Y
ν
(
x
)
d
x
]
,
{\displaystyle s_{\mu ,\nu }(z)={\frac {\pi }{2}}\left,}
S
μ
,
ν
(
z
)
=
s
μ
,
ν
(
z
)
+
2
μ
−
1
Γ
(
μ
+
ν
+
1
2
)
Γ
(
μ
−
ν
+
1
2
)
(
sin
[
(
μ
−
ν
)
π
2
]
J
ν
(
z
)
−
cos
[
(
μ
−
ν
)
π
2
]
Y
ν
(
z
)
)
,
{\displaystyle S_{\mu ,\nu }(z)=s_{\mu ,\nu }(z)+2^{\mu -1}\Gamma \left({\frac {\mu +\nu +1}{2}}\right)\Gamma \left({\frac {\mu -\nu +1}{2}}\right)\left(\sin \leftJ_{\nu }(z)-\cos \leftY_{\nu }(z)\right),}
where J ν (z ) is a Bessel function of the first kind and Y ν (z ) a Bessel function of the second kind.
The s function can also be written as
s
μ
,
ν
(
z
)
=
z
μ
+
1
(
μ
−
ν
+
1
)
(
μ
+
ν
+
1
)
1
F
2
(
1
;
μ
2
−
ν
2
+
3
2
,
μ
2
+
ν
2
+
3
2
;
−
z
2
4
)
,
{\displaystyle s_{\mu ,\nu }(z)={\frac {z^{\mu +1}}{(\mu -\nu +1)(\mu +\nu +1)}}{}_{1}F_{2}(1;{\frac {\mu }{2}}-{\frac {\nu }{2}}+{\frac {3}{2}},{\frac {\mu }{2}}+{\frac {\nu }{2}}+{\frac {3}{2}};-{\frac {z^{2}}{4}}),}
where p F q is a generalized hypergeometric function .
See also
References
Watson's "Treatise on the Theory of Bessel functions" (1966), Section 10.7, Equation (10)
Erdélyi, Arthur; Magnus, Wilhelm ; Oberhettinger, Fritz; Tricomi, Francesco G. (1953), Higher transcendental functions. Vol II (PDF), McGraw-Hill Book Company, Inc., New York-Toronto-London, MR 0058756
Lommel, E. (1875), "Ueber eine mit den Bessel'schen Functionen verwandte Function" , Math. Ann. , 9 (3): 425–444, doi :10.1007/BF01443342
Lommel, E. (1880), "Zur Theorie der Bessel'schen Funktionen IV", Math. Ann. , 16 (2): 183–208, doi :10.1007/BF01446386
Paris, R. B. (2010), "Lommel function" , in Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions , Cambridge University Press, ISBN 978-0-521-19225-5 , MR 2723248 .
Solomentsev, E.D. (2001) , "Lommel function" , Encyclopedia of Mathematics , EMS Press
External links
Categories :
Lommel function
Add topic
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑