Misplaced Pages

Uranus

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Magnetosphere of Uranus) Seventh planet from the Sun This article is about the planet. For the Greek god, see Uranus (mythology). For other uses, see Uranus (disambiguation) and Uranian (disambiguation).

Uranus
Uranus in true colour, as captured by Voyager 2. Its pale, muted appearance is due to a shroud of haze above its clouds
Discovery
Discovered byWilliam Herschel
Discovery date13 March 1781
Designations
Pronunciation/ˈjʊərənəs/ or /jʊˈreɪnəs/
Named afterthe Latin form Ūranus of the Greek god Οὐρανός Ouranos
AdjectivesUranian (/jʊˈreɪniən/)
Symbol⛢, ♅
Orbital characteristics
Epoch J2000
Aphelion20.0965 AU (3.00639 billion km)
Perihelion18.2861 AU (2.73556 billion km)
Semi-major axis19.19126 AU (2.870972 billion km)
Eccentricity0.04717
Orbital period (sidereal)
Orbital period (synodic)369.66 days
Average orbital speed6.80 km/s
Mean anomaly142.238600°
Inclination
Longitude of ascending node74.006°
Time of perihelion17–19 August 2050
Argument of perihelion96.998857°
Known satellites28
Physical characteristics
Mean radius25,362±7 km
Equatorial radius25,559±4 km
4.007 Earths
Polar radius24,973±20 km
3.929 Earths
Flattening0.0229±0.0008
Circumference159,354.1 km
Surface area8.1156×10 km
15.91 Earths
Volume6.833×10 km
63.086 Earths
Mass(8.6810±0.0013)×10 kg
14.536 Earths
GM=5,793,939±13 km/s
Mean density1.27 g/cm
Surface gravity8.69 m/s (0.886 g0)
Moment of inertia factor0.23 (estimate)
Escape velocity21.3 km/s
Synodic rotation period−0.71832 d
−17 h 14 m 23 s
(retrograde)
Sidereal rotation period−0.71833 d
−17 h 14 min 24 s
(retrograde)
Equatorial rotation velocity2.59 km/s
Axial tilt82.23° (to orbit, retrograde). 97.77°(prograde, right-hand rule)
North pole right ascension17 9 15
257.311°
North pole declination−15.175°
Albedo0.300 (Bond)
0.488 (geom.)
Surface temp. min mean max
bar level 76 K
(−197.2 °C)
0.1 bar
(tropopause)
47 K 53 K 57 K
Apparent magnitude5.38 to 6.03
Absolute magnitude (H)−7.2
Angular diameter3.3″ to 4.1″
Atmosphere
Scale height27.7 km
Composition by volumeBelow 1.3 bar (130 kPa): Icy volatiles:

Uranus is the seventh planet from the Sun. It is a gaseous cyan-coloured ice giant. Most of the planet is made of water, ammonia, and methane in a supercritical phase of matter, which astronomy calls "ice" or volatiles. The planet's atmosphere has a complex layered cloud structure and has the lowest minimum temperature (49 K (−224 °C; −371 °F)) of all the Solar System's planets. It has a marked axial tilt of 82.23° with a retrograde rotation period of 17 hours and 14 minutes. This means that in an 84-Earth-year orbital period around the Sun, its poles get around 42 years of continuous sunlight, followed by 42 years of continuous darkness.

Uranus has the third-largest diameter and fourth-largest mass among the Solar System's planets. Based on current models, inside its volatile mantle layer is a rocky core, and surrounding it is a thick hydrogen and helium atmosphere. Trace amounts of hydrocarbons (thought to be produced via hydrolysis) and carbon monoxide along with carbon dioxide (thought to have been originated from comets) have been detected in the upper atmosphere. There are many unexplained climate phenomena in Uranus's atmosphere, such as its peak wind speed of 900 km/h (560 mph), variations in its polar cap, and its erratic cloud formation. The planet also has very low internal heat compared to other giant planets, the cause of which remains unclear.

Like the other giant planets, Uranus has a ring system, a magnetosphere, and many natural satellites. The extremely dark ring system reflects only about 2% of the incoming light. Uranus's 28 natural satellites include 18 known regular moons, of which 13 are small inner moons. Further out are the larger five major moons of the planet: Miranda, Ariel, Umbriel, Titania, and Oberon. Orbiting at a much greater distance from Uranus are the ten known irregular moons. The planet's magnetosphere is highly asymmetric and has many charged particles, which may be the cause of the darkening of its rings and moons.

Uranus is visible to the naked eye, but it is very dim and was not classified as a planet until 1781, when it was first observed by William Herschel. About seven decades after its discovery, consensus was reached that the planet be named after the Greek god Uranus (Ouranos), one of the Greek primordial deities. As of 2024, it had been visited up close only once when in 1986 the Voyager 2 probe flew by the planet. Though nowadays it can be resolved and observed by telescopes, there is much desire to revisit the planet, as shown by Planetary Science Decadal Survey's decision to make the proposed Uranus Orbiter and Probe mission a top priority in the 2023–2032 survey, and the CNSA's proposal to fly by the planet with a subprobe of Tianwen-4.

History

Position of Uranus (marked with a cross) on 13 March 1781, the date of its discovery

Like the classical planets, Uranus is visible to the naked eye, but it was never recognised as a planet by ancient observers because of its dimness and slow orbit. William Herschel first observed Uranus on 13 March 1781, leading to its discovery as a planet, expanding the known boundaries of the Solar System for the first time in history and making Uranus the first planet classified as such with the aid of a telescope. The discovery of Uranus also effectively doubled the size of the known Solar System because Uranus is around twice the distance from the Sun as the planet Saturn.

Discovery

William Herschel, discoverer of Uranus

Before its recognition as a planet, Uranus had been observed on numerous occasions, albeit generally misidentified as a star. The earliest possible known observation was by Hipparchus, who in 128 BC might have recorded it as a star for his star catalogue that was later incorporated into Ptolemy's Almagest. The earliest definite sighting was in 1690, when John Flamsteed observed it at least six times, cataloguing it as 34 Tauri. The French astronomer Pierre Charles Le Monnier observed Uranus at least twelve times between 1750 and 1769, including on four consecutive nights.

William Herschel observed Uranus on 13 March 1781 from the garden of his house at 19 New King Street in Bath, Somerset, England (now the Herschel Museum of Astronomy), and initially reported it (on 26 April 1781) as a comet. With a homemade 6.2-inch reflecting telescope, Herschel "engaged in a series of observations on the parallax of the fixed stars."

Herschel recorded in his journal: "In the quartile near ζ Tauri ... either Nebulous star or perhaps a comet." On 17 March he noted: "I looked for the Comet or Nebulous Star and found that it is a Comet, for it has changed its place." When he presented his discovery to the Royal Society, he continued to assert that he had found a comet, but also implicitly compared it to a planet:

The power I had on when I first saw the comet was 227. From experience I know that the diameters of the fixed stars are not proportionally magnified with higher powers, as planets are; therefore I now put the powers at 460 and 932, and found that the diameter of the comet increased in proportion to the power, as it ought to be, on the supposition of its not being a fixed star, while the diameters of the stars to which I compared it were not increased in the same ratio. Moreover, the comet being magnified much beyond what its light would admit of, appeared hazy and ill-defined with these great powers, while the stars preserved that lustre and distinctness which from many thousand observations I knew they would retain. The sequel has shown that my surmises were well-founded, this proving to be the Comet we have lately observed.

Herschel notified the Astronomer Royal Nevil Maskelyne of his discovery and received this flummoxed reply from him on 23 April 1781: "I don't know what to call it. It is as likely to be a regular planet moving in an orbit nearly circular to the sun as a Comet moving in a very eccentric ellipsis. I have not yet seen any coma or tail to it."

Although Herschel continued to describe his new object as a comet, other astronomers had already begun to suspect otherwise. Finnish-Swedish astronomer Anders Johan Lexell, working in Russia, was the first to compute the orbit of the new object. Its nearly circular orbit led him to the conclusion that it was a planet rather than a comet. Berlin astronomer Johann Elert Bode described Herschel's discovery as "a moving star that can be deemed a hitherto unknown planet-like object circulating beyond the orbit of Saturn". Bode concluded that its near-circular orbit was more like a planet's than a comet's.

The object was soon universally accepted as a new planet. By 1783, Herschel acknowledged this to Royal Society president Joseph Banks: "By the observation of the most eminent Astronomers in Europe it appears that the new star, which I had the honour of pointing out to them in March 1781, is a Primary Planet of our Solar System." In recognition of his achievement, King George III gave Herschel an annual stipend of £200 (equivalent to £30,000 in 2023) on condition that he moved to Windsor so that the Royal Family could look through his telescopes.

Name

The name Uranus references the ancient Greek deity of the sky Uranus (Ancient Greek: Οὐρανός), known as Caelus in Roman mythology, the father of Cronus (Saturn), grandfather of Zeus (Jupiter) and the great-grandfather of Ares (Mars), which was rendered as Uranus in Latin (IPA: [ˈuːranʊs]). It is the only one of the eight planets whose English name derives from a figure of Greek mythology. The pronunciation of the name Uranus preferred among astronomers is /ˈjʊərənəs/ YOOR-ə-nəs, with the long "u" of English and stress on the first syllable as in Latin Uranus, in contrast to /jʊˈreɪnəs/ yoo-RAY-nəs, with stress on the second syllable and a long a, though both are considered acceptable.

Consensus on the name was not reached until almost 70 years after the planet's discovery. During the original discussions following discovery, Maskelyne asked Herschel to "do the astronomical world the faver [sic] to give a name to your planet, which is entirely your own, which we are so much obliged to you for the discovery of". In response to Maskelyne's request, Herschel decided to name the object Georgium Sidus (George's Star), or the "Georgian Planet" in honour of his new patron, King George III. He explained this decision in a letter to Joseph Banks:

In the fabulous ages of ancient times the appellations of Mercury, Venus, Mars, Jupiter and Saturn were given to the Planets, as being the names of their principal heroes and divinities. In the present more philosophical era it would hardly be allowable to have recourse to the same method and call it Juno, Pallas, Apollo or Minerva, for a name to our new heavenly body. The first consideration of any particular event, or remarkable incident, seems to be its chronology: if in any future age it should be asked, when this last-found Planet was discovered? It would be a very satisfactory answer to say, 'In the reign of King George the Third'.

Herschel's proposed name was not popular outside Britain and Hanover, and alternatives were soon proposed. Astronomer Jérôme Lalande proposed that it be named Herschel in honour of its discoverer. Swedish astronomer Erik Prosperin proposed the names Astraea, Cybele (now the names of asteroids), and Neptune, which would become the name of the next planet to be discovered. Georg Lichtenberg from Göttingen also supported Astraea (as Austräa), but she is traditionally associated with Virgo instead of Taurus. Neptune was supported by other astronomers who liked the idea of commemorating the victories of the British Royal Naval fleet in the course of the American Revolutionary War by calling the new planet either Neptune George III or Neptune Great Britain, a compromise Lexell suggested as well. Daniel Bernoulli suggested Hypercronius and Transaturnis. Minerva was also proposed.

Johann Elert Bode, the astronomer who suggested the name Uranus

In a March 1782 treatise, Johann Elert Bode proposed Uranus, the Latinised version of the Greek god of the sky, Ouranos. Bode argued that the name should follow the mythology so as not to stand out as different from the other planets, and that Uranus was an appropriate name as the father of the first generation of the Titans. He also noted the elegance of the name in that just as Saturn was the father of Jupiter, the new planet should be named after the father of Saturn. However, he was apparently unaware that Uranus was only the Latinised form of the deity's name, and the Roman equivalent was Caelus. In 1789, Bode's Royal Academy colleague Martin Klaproth named his newly discovered element uranium in support of Bode's choice. Ultimately, Bode's suggestion became the most widely used, and became universal in 1850 when HM Nautical Almanac Office, the final holdout, switched from using Georgium Sidus to Uranus.

Uranus has two astronomical symbols. The first to be proposed, ⛢, was proposed by Johann Gottfried Köhler at Bode's request in 1782. Köhler suggested that the new planet be given the symbol for platinum, which had been described scientifically only 30 years before. As there was no alchemical symbol for platinum, he suggested ⛢ or ⛢, a combination of the planetary-metal symbols ☉ (gold) and ♂ (iron), as platinum (or 'white gold') is found mixed with iron. Bode thought that an upright orientation, ⛢, fit better with the symbols for the other planets while remaining distinct. This symbol predominates in modern astronomical use in the rare cases that symbols are used at all. The second symbol, ♅, was suggested by Lalande in 1784. In a letter to Herschel, Lalande described it as "un globe surmonté par la première lettre de votre nom" ("a globe surmounted by the first letter of your surname"). The second symbol is nearly universal in astrology.

In English-language popular culture, humour is often derived from the common pronunciation of Uranus's name, which resembles that of the phrase "your anus".

Uranus is called by a variety of names in other languages. Uranus's name is literally translated as the "Heavenly King star" in Chinese (天王星; Tiānwángxīng), Japanese (天王星), Korean (천왕성), and Vietnamese (sao Thiên Vương). In Thai, its official name is Dao Yurenat (ดาวยูเรนัส), as in English. Its other name in Thai is Dao Maruettayu (ดาวมฤตยู, Star of Mṛtyu), after the Sanskrit word for 'death', Mrtyu (मृत्यु). In Mongolian, its name is Tengeriin Van (Тэнгэрийн ван), translated as 'King of the Sky', reflecting its namesake god's role as the ruler of the heavens. In Hawaiian, its name is Heleʻekala, the Hawaiian rendering of the name 'Herschel'.

Formation

Main article: Formation and evolution of the Solar System For details of the evolution of Uranus's orbit, see Nice model.

It is argued that the differences between the ice giants and the gas giants arise from their formation history. The Solar System is hypothesised to have formed from a rotating disk of gas and dust known as the presolar nebula. Much of the nebula's gas, primarily hydrogen and helium, formed the Sun, and the dust grains collected together to form the first protoplanets. As the planets grew, some of them eventually accreted enough matter for their gravity to hold on to the nebula's leftover gas. The more gas they held onto, the larger they became; the larger they became, the more gas they held onto until a critical point was reached, and their size began to increase exponentially. The ice giants, with only a few Earth masses of nebular gas, never reached that critical point. Recent simulations of planetary migration have suggested that both ice giants formed closer to the Sun than their present positions, and moved outwards after formation (the Nice model).

Orbit and rotation

Uranus orbits the Sun once every 84 years. As viewed against the background of stars, since being discovered in 1781, the planet has returned to the point of its discovery northeast of the binary star Zeta Tauri twice—in March 1865 and March 1949—and will return to this location again in April 2033.

Its average distance from the Sun is roughly 20 AU (3 billion km; 2 billion mi). The difference between its minimum and maximum distance from the Sun is 1.8 AU, larger than that of any other planet, though not as large as that of dwarf planet Pluto. The intensity of sunlight varies inversely with the square of the distance—on Uranus (at about 20 times the distance from the Sun compared to Earth), it is about 1/400 the intensity of light on Earth.

The orbital elements of Uranus were first calculated in 1783 by Pierre-Simon Laplace. With time, discrepancies began to appear between predicted and observed orbits, and in 1841, John Couch Adams first proposed that the differences might be due to the gravitational tug of an unseen planet. In 1845, Urbain Le Verrier began his own independent research into Uranus's orbit. On 23 September 1846, Johann Gottfried Galle located a new planet, later named Neptune, at nearly the position predicted by Le Verrier.

The rotational period of the interior of Uranus is 17 hours, 14 minutes. As on all giant planets, its upper atmosphere experiences strong winds in the direction of rotation. At some latitudes, such as about 60 degrees south, visible features of the atmosphere move much faster, making a full rotation in as little as 14 hours.

Axial tilt

Simulated Earth view of Uranus from 1986 to 2030, from southern summer solstice in 1986 to equinox in 2007 and northern summer solstice in 2028.

The Uranian axis of rotation is approximately parallel to the plane of the Solar System, with an axial tilt of 82.23°. Depending on which pole is considered north, the tilt can be described either as 82.23° or as 97.8°. The former follows the International Astronomical Union definition that the north pole is the pole which lies on Earth's North's side of the invariable plane of the Solar System. Uranus has retrograde rotation when defined this way. Alternatively, the convention in which a body's north and south poles are defined according to the right-hand rule in relation to the direction of rotation, Uranus's axial tilt may be given instead as 97.8°, which reverses which pole is considered north and which is considered south and giving the planet prograde rotation. This gives it seasonal changes completely unlike those of the other planets. Pluto and asteroid 2 Pallas also have extreme axial tilts. Near the solstice, one pole faces the Sun continuously and the other faces away, with only a narrow strip around the equator experiencing a rapid day–night cycle, with the Sun low over the horizon. On the other side of Uranus's orbit, the orientation of the poles towards the Sun is reversed. Each pole gets around 42 years of continuous sunlight, followed by 42 years of darkness. Near the time of the equinoxes, the Sun faces the equator of Uranus, giving a period of day–night cycles similar to those seen on most of the other planets.

One result of this axis orientation is that, averaged over the Uranian year, the near-polar regions of Uranus receive a greater energy input from the Sun than its equatorial regions. Nevertheless, Uranus is hotter at its equator than at its poles. The underlying mechanism that causes this is unknown. The reason for Uranus's unusual axial tilt is also not known with certainty, but the usual speculation is that during the formation of the Solar System, an Earth-sized protoplanet collided with Uranus, causing the skewed orientation. Research by Jacob Kegerreis of Durham University suggests that the tilt resulted from a rock larger than Earth crashing into the planet 3 to 4 billion years ago. Uranus's south pole was pointed almost directly at the Sun at the time of Voyager 2's flyby in 1986.

List of solstices and equinoxes
Northern hemisphere Year Southern hemisphere
Winter solstice 1902, 1986, 2069 Summer solstice
Vernal equinox 1923, 2007, 2092 Autumnal equinox
Summer solstice 1944, 2028 Winter solstice
Autumnal equinox 1965, 2050 Vernal equinox

Visibility from Earth

The mean apparent magnitude of Uranus is 5.68 with a standard deviation of 0.17, while the extremes are 5.38 and 6.03. This range of brightness is near the limit of naked eye visibility. Much of the variability is dependent upon the planetary latitudes being illuminated from the Sun and viewed from the Earth. Its angular diameter is between 3.4 and 3.7 arcseconds, compared with 16 to 20 arcseconds for Saturn and 32 to 45 arcseconds for Jupiter. At opposition, Uranus is visible to the naked eye in dark skies, and becomes an easy target even in urban conditions with binoculars. On larger amateur telescopes with an objective diameter of between 15 and 23 cm, Uranus appears as a pale cyan disk with distinct limb darkening. With a large telescope of 25 cm or wider, cloud patterns, as well as some of the larger satellites, such as Titania and Oberon, may be visible.

Internal structure

Size comparison of Earth and Uranus

Uranus's mass is roughly 14.5 times that of Earth, making it the least massive of the giant planets. Its diameter is slightly larger than Neptune's at roughly four times that of Earth. A resulting density of 1.27 g/cm makes Uranus the second least dense planet, after Saturn. This value indicates that it is made primarily of various ices, such as water, ammonia, and methane. The total mass of ice in Uranus's interior is not precisely known, because different figures emerge depending on the model chosen; it must be between 9.3 and 13.5 Earth masses. Hydrogen and helium constitute only a small part of the total, with between 0.5 and 1.5 Earth masses. The remainder of the non-ice mass (0.5 to 3.7 Earth masses) is accounted for by rocky material.

The standard model of Uranus's structure is that it consists of three layers: a rocky (silicate/iron–nickel) core in the centre, an icy mantle in the middle, and an outer gaseous hydrogen/helium envelope. The core is relatively small, with a mass of only 0.55 Earth masses and a radius less than 20% of the planet; the mantle comprises its bulk, with around 13.4 Earth masses, and the upper atmosphere is relatively insubstantial, weighing about 0.5 Earth masses and extending for the last 20% of Uranus's radius. Uranus's core density is around 9 g/cm, with a pressure in the centre of 8 million bars (800 GPa) and a temperature of about 5000 K. The ice mantle is not in fact composed of ice in the conventional sense, but of a hot and dense fluid consisting of water, ammonia and other volatiles. This fluid, which has a high electrical conductivity, is sometimes called a water–ammonia ocean.

Diagram of the interior of Uranus, listing each layer's composition

The extreme pressure and temperature deep within Uranus may break up the methane molecules, with the carbon atoms condensing into crystals of diamond that rain down through the mantle like hailstones. This phenomenon is similar to diamond rains that are theorised by scientists to exist on Jupiter, Saturn, and Neptune. Very-high-pressure experiments at the Lawrence Livermore National Laboratory suggest that an ocean of metallic liquid carbon, perhaps with floating solid 'diamond-bergs', may comprise the base of the mantle.

The bulk compositions of Uranus and Neptune are different from those of Jupiter and Saturn, with ice dominating over gases, hence justifying their separate classification as ice giants. There may be a layer of ionic water where the water molecules break down into a soup of hydrogen and oxygen ions, and deeper down superionic water in which the oxygen crystallises but the hydrogen ions move freely within the oxygen lattice.

Although the model considered above is reasonably standard, it is not unique; other models also satisfy observations. For instance, if substantial amounts of hydrogen and rocky material are mixed in the ice mantle, the total mass of ices in the interior will be lower, and, correspondingly, the total mass of rocks and hydrogen will be higher. Presently available data does not allow a scientific determination of which model is correct. The fluid interior structure of Uranus means that it has no solid surface. The gaseous atmosphere gradually transitions into the internal liquid layers. For the sake of convenience, a revolving oblate spheroid set at the point at which atmospheric pressure equals 1 bar (100 kPa) is conditionally designated as a "surface". It has equatorial and polar radii of 25,559 ± 4 km (15,881.6 ± 2.5 mi) and 24,973 ± 20 km (15,518 ± 12 mi), respectively. This surface is used throughout this article as a zero point for altitudes.

Internal heat

Uranus's internal heat appears markedly lower than that of the other giant planets; in astronomical terms, it has a low thermal flux. Why Uranus's internal temperature is so low is still not understood. Neptune, which is Uranus's near twin in size and composition, radiates 2.61 times as much energy into space as it receives from the Sun, but Uranus radiates hardly any excess heat at all. The total power radiated by Uranus in the far infrared (i.e. heat) part of the spectrum is 1.06±0.08 times the solar energy absorbed in its atmosphere. Uranus's heat flux is only 0.042±0.047 W/m, which is lower than the internal heat flux of Earth of about 0.075 W/m. The lowest temperature recorded in Uranus's tropopause is 49 K (−224.2 °C; −371.5 °F), making Uranus the coldest planet in the Solar System.

One of the hypotheses for this discrepancy suggests the Earth-sized impactor theorised to be behind Uranus's axial tilt left the planet with a depleted core temperature, as the impact caused Uranus to expel most of its primordial heat. Another hypothesis is that some form of barrier exists in Uranus's upper layers that prevents the core's heat from reaching the surface. For example, convection may take place in a set of compositionally different layers, which may inhibit upward heat transport; perhaps double diffusive convection is a limiting factor.

In a 2021 study, the ice giants' interior conditions were mimicked by compressing water that contained minerals such as olivine and ferropericlase, thus showing that large amounts of magnesium could be dissolved in the liquid interiors of Uranus and Neptune. If Uranus has more of this magnesium than Neptune, it could form a thermal insulation layer, thus potentially explaining the planet's low temperature.

Atmosphere

Main article: Atmosphere of Uranus

Although there is no well-defined solid surface within Uranus's interior, the outermost part of Uranus's gaseous envelope that is accessible to remote sensing is called its atmosphere. Remote-sensing capability extends down to roughly 300 km below the 1 bar (100 kPa) level, with a corresponding pressure around 100 bar (10 MPa) and temperature of 320 K (47 °C; 116 °F). The tenuous thermosphere extends over two planetary radii from the nominal surface, which is defined to lie at a pressure of 1 bar. The Uranian atmosphere can be divided into three layers: the troposphere, between altitudes of −300 and 50 km (−186 and 31 mi) and pressures from 100 to 0.1 bar (10 MPa to 10 kPa); the stratosphere, spanning altitudes between 50 and 4,000 km (31 and 2,485 mi) and pressures of between 0.1 and 10 bar (10 kPa to 10 μPa); and the thermosphere extending from 4,000 km to as high as 50,000 km from the surface. There is no mesosphere.

Composition

Diagram of the Uranus atmosphere's composition and layers, along with the graph of its pressure

The composition of Uranus's atmosphere is different from its bulk, consisting mainly of molecular hydrogen and helium. The helium molar fraction, i.e. the number of helium atoms per molecule of gas, is 0.15±0.03 in the upper troposphere, which corresponds to a mass fraction 0.26±0.05. This value is close to the protosolar helium mass fraction of 0.275±0.01, indicating that helium has not settled in its centre as it has in the gas giants. The third-most-abundant component of Uranus's atmosphere is methane (CH4). Methane has prominent absorption bands in the visible and near-infrared (IR), making Uranus aquamarine or cyan in colour. Methane molecules account for 2.3% of the atmosphere by molar fraction below the methane cloud deck at the pressure level of 1.3 bar (130 kPa); this represents about 20 to 30 times the carbon abundance found in the Sun.

The mixing ratio is much lower in the upper atmosphere due to its extremely low temperature, which lowers the saturation level and causes excess methane to freeze out. The abundances of less volatile compounds such as ammonia, water, and hydrogen sulfide in the deep atmosphere are poorly known. They are probably also higher than solar values. Along with methane, trace amounts of various hydrocarbons are found in the stratosphere of Uranus, which are thought to be produced from methane by photolysis induced by the solar ultraviolet (UV) radiation. They include ethane (C2H6), acetylene (C2H2), methylacetylene (CH3C2H), and diacetylene (C2HC2H). Spectroscopy has also uncovered traces of water vapour, carbon monoxide, and carbon dioxide in the upper atmosphere, which can only originate from an external source such as infalling dust and comets.

Troposphere

The troposphere is the lowest and densest part of the atmosphere and is characterised by a decrease in temperature with altitude. The temperature falls from about 320 K (47 °C; 116 °F) at the base of the nominal troposphere at −300 km to 53 K (−220 °C; −364 °F) at 50 km. The temperatures in the coldest upper region of the troposphere (the tropopause) actually vary in the range between 49 and 57 K (−224 and −216 °C; −371 and −357 °F) depending on planetary latitude. The tropopause region is responsible for the vast majority of Uranus's thermal far infrared emissions, thus determining its effective temperature of 59.1 ± 0.3 K (−214.1 ± 0.3 °C; −353.3 ± 0.5 °F).

The troposphere is thought to have a highly complex cloud structure; water clouds are hypothesised to lie in the pressure range of 50 to 100 bar (5 to 10 MPa), ammonium hydrosulfide clouds in the range of 20 to 40 bar (2 to 4 MPa), ammonia or hydrogen sulfide clouds at between 3 and 10 bar (0.3 and 1 MPa) and finally directly detected thin methane clouds at 1 to 2 bar (0.1 to 0.2 MPa). The troposphere is a dynamic part of the atmosphere, exhibiting strong winds, bright clouds, and seasonal changes.

Upper atmosphere

Uranus's upper atmosphere imaged by HST during the Outer Planet Atmosphere Legacy (OPAL) observing program.

The middle layer of the Uranian atmosphere is the stratosphere, where temperature generally increases with altitude from 53 K (−220 °C; −364 °F) in the tropopause to between 800 and 850 K (527 and 577 °C; 980 and 1,070 °F) at the base of the thermosphere. The heating of the stratosphere is caused by absorption of solar UV and IR radiation by methane and other hydrocarbons, which form in this part of the atmosphere as a result of methane photolysis. Heat is also conducted from the hot thermosphere. The hydrocarbons occupy a relatively narrow layer at altitudes of between 100 and 300 km corresponding to a pressure range of 1,000 to 10 Pa and temperatures of between 75 and 170 K (−198 and −103 °C; −325 and −154 °F).

The most abundant hydrocarbons are methane, acetylene, and ethane with mixing ratios of around 10 relative to hydrogen. The mixing ratio of carbon monoxide is similar at these altitudes. Heavier hydrocarbons and carbon dioxide have mixing ratios three orders of magnitude lower. The abundance ratio of water is around 7×10. Ethane and acetylene tend to condense in the colder lower part of the stratosphere and tropopause (below 10 mBar level) forming haze layers, which may be partly responsible for the bland appearance of Uranus. The concentration of hydrocarbons in the Uranian stratosphere above the haze is significantly lower than in the stratospheres of the other giant planets.

Planet Uranus – North Pole – Cyclone (VLA; October 2021)

The outermost layer of the Uranian atmosphere is the thermosphere and corona, which has a uniform temperature of around 800 K (527 °C) to 850 K (577 °C). The heat sources necessary to sustain such a high level are not understood, as neither the solar UV nor the auroral activity can provide the necessary energy to maintain these temperatures. The weak cooling efficiency due to the lack of hydrocarbons in the stratosphere above 0.1 mBar pressure levels may contribute too. In addition to molecular hydrogen, the thermosphere-corona contains many free hydrogen atoms. Their small mass and high temperatures explain why the corona extends as far as 50,000 km (31,000 mi), or two Uranian radii, from its surface.

This extended corona is a unique feature of Uranus. Its effects include a drag on small particles orbiting Uranus, causing a general depletion of dust in the Uranian rings. The Uranian thermosphere, together with the upper part of the stratosphere, corresponds to the ionosphere of Uranus. Observations show that the ionosphere occupies altitudes from 2,000 to 10,000 km (1,200 to 6,200 mi). The Uranian ionosphere is denser than that of either Saturn or Neptune, which may arise from the low concentration of hydrocarbons in the stratosphere. The ionosphere is mainly sustained by solar UV radiation and its density depends on the solar activity. Auroral activity is insignificant as compared to Jupiter and Saturn.

Climate

Main article: Climate of Uranus

At ultraviolet and visible wavelengths, Uranus's atmosphere is bland in comparison to the other giant planets, even to Neptune, which it otherwise closely resembles. When Voyager 2 flew by Uranus in 1986, it observed a total of 10 cloud features across the entire planet. One proposed explanation for this dearth of features is that Uranus's internal heat is markedly lower than that of the other giant planets, being the coldest planet in the Solar System.

Banded structure, winds and clouds

Voyager 2's timelapse of Uranus's dynamic atmosphere

In 1986, Voyager 2 found that the visible southern hemisphere of Uranus can be subdivided into two regions: a bright polar cap and dark equatorial bands. Their boundary is located at about −45° of latitude. A narrow band straddling the latitudinal range from −45 to −50° is the brightest large feature on its visible surface. It is called a southern "collar". The cap and collar are thought to be a dense region of methane clouds located within the pressure range of 1.3 to 2 bar. Besides the large-scale banded structure, Voyager 2 observed ten small bright clouds, most lying several degrees to the north from the collar. In all other respects, Uranus looked like a dynamically dead planet in 1986.

Voyager 2 arrived during the height of Uranus's southern summer and could not observe the northern hemisphere. At the beginning of the 21st century, when the northern polar region came into view, the Hubble Space Telescope (HST) and Keck telescope initially observed neither a collar nor a polar cap in the northern hemisphere. So Uranus appeared to be asymmetric: bright near the south pole and uniformly dark in the region north of the southern collar. In 2007, when Uranus passed its equinox, the southern collar almost disappeared, and a faint northern collar emerged near 45° of latitude. In 2023, a team employing the Very Large Array observed a dark collar at 80° latitude, and a bright spot at the north pole, indicating the presence of a polar vortex.

The first dark spot observed on Uranus. Image obtained by the HST ACS in 2006.

In the 1990s, the number of the observed bright cloud features grew considerably, partly because new high-resolution imaging techniques became available. Most were found in the northern hemisphere as it started to become visible. An early explanation—that bright clouds are easier to identify in its dark part, whereas in the southern hemisphere the bright collar masks them—was shown to be incorrect. Nevertheless, there are differences between the clouds of each hemisphere. The northern clouds are smaller, sharper and brighter. They appear to lie at a higher altitude. The lifetime of clouds spans several orders of magnitude. Some small clouds live for hours; at least one southern cloud may have persisted since the Voyager 2 flyby. Recent observation also discovered that cloud features on Uranus have a lot in common with those on Neptune. For example, the dark spots common on Neptune had never been observed on Uranus before 2006, when the first such feature dubbed Uranus Dark Spot was imaged. The speculation is that Uranus is becoming more Neptune-like during its equinoctial season.

The tracking of numerous cloud features allowed determination of zonal winds blowing in the upper troposphere of Uranus. At the equator winds are retrograde, which means that they blow in the reverse direction to the planetary rotation. Their speeds are from −360 to −180 km/h (−220 to −110 mph). Wind speeds increase with the distance from the equator, reaching zero values near ±20° latitude, where the troposphere's temperature minimum is located. Closer to the poles, the winds shift to a prograde direction, flowing with Uranus's rotation. Wind speeds continue to increase reaching maxima at ±60° latitude before falling to zero at the poles. Wind speeds at −40° latitude range from 540 to 720 km/h (340 to 450 mph). Because the collar obscures all clouds below that parallel, speeds between it and the southern pole are impossible to measure. In contrast, in the northern hemisphere maximum speeds as high as 860 km/h (540 mph) are observed near +50° latitude.

In 1986, the Voyager 2 Planetary Radio Astronomy (PRA) experiment observed 140 lightning flashes, or Uranian electrostatic discharges with a frequency of 0.9-40 MHz. The UEDs were detected from 600,000 km of Uranus over 24 hours, most of which were not visible . However, microphysical modelling suggests that Uranian lightning occurs in convective storms occurring in deep troposphere water clouds. If this is the case, lightning will not be visible due to the thick cloud layers above the troposphere. The UEDs were detected from 600,000 km of Uranus, most of which were not visible . Uranian lightning has a power of around 10 W, emits 1×10^7 J - 2×10^7 J of energy, and lasts an average of 120 ms. There is a possibility that the power of Uranian lightning varies greatly with the seasons caused by changes in convection rates in the clouds The UEDs were detected from 600,000 km of Uranus, most of which were not visible. Uranian lightning is much more powerful than lightning on Earth and comparable to Jovian lightning. During the Ice Giant flybys, "Voyager 2" detected lightning more clearly on Uranus than on Neptune due to the planet's lower gravity and possible warmer deep atmosphere.

Seasonal variation

Uranus in 2005. Rings, southern collar and a bright cloud in the northern hemisphere are visible (HST ACS image).

For a short period from March to May 2004, large clouds appeared in the Uranian atmosphere, giving it a Neptune-like appearance. Observations included record-breaking wind speeds of 820 km/h (510 mph) and a persistent thunderstorm referred to as "Fourth of July fireworks". On 23 August 2006, researchers at the Space Science Institute (Boulder, Colorado) and the University of Wisconsin observed a dark spot on Uranus's surface, giving scientists more insight into Uranus atmospheric activity. Why this sudden upsurge in activity occurred is not fully known, but it appears that Uranus's extreme axial tilt results in extreme seasonal variations in its weather. Determining the nature of this seasonal variation is difficult because good data on Uranus's atmosphere has existed for less than 84 years, or one full Uranian year. Photometry over the course of half a Uranian year (beginning in the 1950s) has shown regular variation in the brightness in two spectral bands, with maxima occurring at the solstices and minima occurring at the equinoxes. A similar periodic variation, with maxima at the solstices, has been noted in microwave measurements of the deep troposphere begun in the 1960s. Stratospheric temperature measurements beginning in the 1970s also showed maximum values near the 1986 solstice. The majority of this variability is thought to occur owing to changes in viewing geometry.

There are some indications that physical seasonal changes are happening in Uranus. Although Uranus is known to have a bright south polar region, the north pole is fairly dim, which is incompatible with the model of the seasonal change outlined above. During its previous northern solstice in 1944, Uranus displayed elevated levels of brightness, which suggests that the north pole was not always so dim. This information implies that the visible pole brightens some time before the solstice and darkens after the equinox. Detailed analysis of the visible and microwave data revealed that the periodical changes in brightness are not completely symmetrical around the solstices, which also indicates a change in the meridional albedo patterns.

In the 1990s, as Uranus moved away from its solstice, Hubble and ground-based telescopes revealed that the south polar cap darkened noticeably (except the southern collar, which remained bright), whereas the northern hemisphere demonstrated increasing activity, such as cloud formations and stronger winds, bolstering expectations that it should brighten soon. This indeed happened in 2007 when it passed an equinox: a faint northern polar collar arose, and the southern collar became nearly invisible, although the zonal wind profile remained slightly asymmetric, with northern winds being somewhat slower than southern.

The mechanism of these physical changes is still not clear. Near the summer and winter solstices, Uranus's hemispheres lie alternately either in full glare of the Sun's rays or facing deep space. The brightening of the sunlit hemisphere is thought to result from the local thickening of the methane clouds and haze layers located in the troposphere. The bright collar at −45° latitude is also connected with methane clouds. Other changes in the southern polar region can be explained by changes in the lower cloud layers. The variation of the microwave emission from Uranus is probably caused by changes in the deep tropospheric circulation, because thick polar clouds and haze may inhibit convection. Now that the spring and autumn equinoxes are arriving on Uranus, the dynamics are changing and convection can occur again.

Magnetosphere

The magnetic field of Uranus
(animated; 25 March 2020)

Before the arrival of Voyager 2, no measurements of the Uranian magnetosphere had been taken, so its nature remained a mystery. Before 1986, scientists had expected the magnetic field of Uranus to be in line with the solar wind, because it would then align with Uranus's poles that lie in the ecliptic.

Voyager's observations revealed that Uranus's magnetic field is peculiar, both because it does not originate from its geometric centre, and because it is tilted at 59° from the axis of rotation. In fact, the magnetic dipole is shifted from Uranus's centre towards the south rotational pole by as much as one-third of the planetary radius. This unusual geometry results in a highly asymmetric magnetosphere, where the magnetic field strength on the surface in the southern hemisphere can be as low as 0.1 gauss (10 μT), whereas in the northern hemisphere it can be as high as 1.1 gauss (110 μT). The average field at the surface is 0.23 gauss (23 μT).

A diagram showing Uranus's asymmetric magnetosphere

Studies of Voyager 2 data in 2017 suggest that this asymmetry causes Uranus's magnetosphere to connect with the solar wind once a Uranian day, opening the planet to the Sun's particles. In comparison, the magnetic field of Earth is roughly as strong at either pole, and its "magnetic equator" is roughly parallel with its geographical equator. The dipole moment of Uranus is 50 times that of Earth. Neptune has a similarly displaced and tilted magnetic field, suggesting that this may be a common feature of ice giants. One hypothesis is that, unlike the magnetic fields of the terrestrial and gas giants, which are generated within their cores, the ice giants' magnetic fields are generated by motion at relatively shallow depths, for instance, in the water–ammonia ocean. Another possible explanation for the magnetosphere's alignment is that there are oceans of liquid diamond in Uranus's interior that would deter the magnetic field.

It is, however, unclear whether the observed asymmetry of Uranus' magnetic field represents the typical state of the magnetosphere, or a coincidence of observing it during unusual space weather conditions. A post-analysis of Voyager data from 2024 suggests that the strongly asymmetric shape of the magnetosphere observed during the fly-by represents an anomalous state, as the measured values of solar wind density at the time were unusually high, which could have compressed Uranus' magnetosphere. The interaction with the solar wind event could also explain the apparent paradox of presence of strong electron radiation belts despite the otherwise low magnetospheric plasma density measured. Such conditions are estimated to occur less than 5% of the time.

Despite its curious alignment, in other respects the Uranian magnetosphere is like those of other planets: it has a bow shock at about 23 Uranian radii ahead of it, a magnetopause at 18 Uranian radii, a fully developed magnetotail, and radiation belts. Overall, the structure of Uranus's magnetosphere is different from Jupiter's and more similar to Saturn's. Uranus's magnetotail trails behind it into space for millions of kilometres and is twisted by its sideways rotation into a long corkscrew.

Aurorae on Uranus taken by the Space Telescope Imaging Spectrograph (STIS) installed on Hubble.

Uranus's magnetosphere contains charged particles: mainly protons and electrons, with a small amount of H2 ions. Many of these particles probably derive from the thermosphere. The ion and electron energies can be as high as 4 and 1.2 megaelectronvolts, respectively. The density of low-energy (below 1 kiloelectronvolt) ions in the inner magnetosphere is about 2 cm. The particle population is strongly affected by the Uranian moons, which sweep through the magnetosphere, leaving noticeable gaps. The particle flux is high enough to cause darkening or space weathering of their surfaces on an astronomically rapid timescale of 100,000 years. This may be the cause of the uniformly dark colouration of the Uranian satellites and rings.

Uranus has relatively well developed aurorae, which are seen as bright arcs around both magnetic poles. Unlike Jupiter's, Uranus's aurorae seem to be insignificant for the energy balance of the planetary thermosphere. They, or rather their trihydrogen cations' infrared spectral emissions, have been studied in-depth as of late 2023.

In March 2020, NASA astronomers reported the detection of a large atmospheric magnetic bubble, also known as a plasmoid, released into outer space from the planet Uranus, after reevaluating old data recorded by the Voyager 2 space probe during a flyby of the planet in 1986.

Moons

Main article: Moons of Uranus See also: Timeline of discovery of Solar System planets and their moons
Major moons of Uranus in order of increasing distance (left to right), at their proper relative sizes and albedos. From left to right, they are Miranda, Ariel, Umbriel, Titania, and Oberon. (collage of Voyager 2 photographs)
Uranus along with its five major moons and nine inner moons as taken by the James Webb Space Telescope's NIRCam.

Uranus has 28 known natural satellites. The names of these satellites are chosen from characters in the works of Shakespeare and Alexander Pope. The five main satellites are Miranda, Ariel, Umbriel, Titania, and Oberon. The Uranian satellite system is the least massive among those of the giant planets; the combined mass of the five major satellites would be less than half that of Triton (largest moon of Neptune) alone. The largest of Uranus's satellites, Titania, has a radius of only 788.9 km (490.2 mi), or less than half that of the Moon, but slightly more than Rhea, the second-largest satellite of Saturn, making Titania the eighth-largest moon in the Solar System. Uranus's satellites have relatively low albedos; ranging from 0.20 for Umbriel to 0.35 for Ariel (in green light). They are ice–rock conglomerates composed of roughly 50% ice and 50% rock. The ice may include ammonia and carbon dioxide.

Among the Uranian satellites, Ariel appears to have the youngest surface, with the fewest impact craters, and Umbriel the oldest. Miranda has fault canyons 20 km (12 mi) deep, terraced layers, and a chaotic variation in surface ages and features. Miranda's past geologic activity is thought to have been driven by tidal heating at a time when its orbit was more eccentric than currently, probably as a result of a former 3:1 orbital resonance with Umbriel. Extensional processes associated with upwelling diapirs are the likely origin of Miranda's 'racetrack'-like coronae. Ariel is thought to have once been held in a 4:1 resonance with Titania.

Uranus has at least one horseshoe orbiter occupying the Sun–Uranus L3 Lagrangian point—a gravitationally unstable region at 180° in its orbit, 83982 Crantor. Crantor moves inside Uranus's co-orbital region on a complex, temporary horseshoe orbit. 2010 EU65 is also a promising Uranus horseshoe librator candidate.

Rings

Main article: Rings of Uranus
Uranus's rings, inner moons, and atmosphere as imaged by the James Webb Space Telescope's near-infrared camera.

The Uranian rings are composed of extremely dark particles, which vary in size from micrometres to a fraction of a metre. Thirteen distinct rings are presently known, the brightest being the ε ring. All except the two rings of Uranus are extremely narrow—they are usually a few kilometres wide. The rings are probably quite young; the dynamics considerations indicate that they did not form with Uranus. The matter in the rings may once have been part of a moon (or moons) that was shattered by high-speed impacts. From numerous pieces of debris that formed as a result of those impacts, only a few particles survived, in stable zones corresponding to the locations of the present rings.

William Herschel described a possible ring around Uranus in 1789. This sighting is generally considered doubtful, because the rings are quite faint, and in the two following centuries none were noted by other observers. Still, Herschel made an accurate description of the epsilon ring's size, its angle relative to Earth, its red colour, and its apparent changes as Uranus travelled around the Sun. The ring system was definitively discovered on 10 March 1977 by James L. Elliot, Edward W. Dunham, and Jessica Mink using the Kuiper Airborne Observatory. The discovery was serendipitous; they planned to use the occultation of the star SAO 158687 (also known as HD 128598) by Uranus to study its atmosphere. When their observations were analysed, they found that the star had disappeared briefly from view five times both before and after it disappeared behind Uranus. They concluded that there must be a ring system around Uranus. Later, they detected four additional rings. The rings were directly imaged when Voyager 2 passed Uranus in 1986. Voyager 2 also discovered two additional faint rings, bringing the total number to eleven.

In December 2005, the Hubble Space Telescope detected a pair of previously unknown rings. The largest is located twice as far from Uranus as the previously known rings. These new rings are so far from Uranus that they are called the "outer" ring system. Hubble also spotted two small satellites, one of which, Mab, shares its orbit with the outermost newly discovered ring. The new rings bring the total number of Uranian rings to 13. In April 2006, images of the new rings from the Keck Observatory yielded the colours of the outer rings: the outermost is blue and the other one red. One hypothesis concerning the outer ring's blue colour is that it is composed of minute particles of water ice from the surface of Mab that are small enough to scatter blue light. In contrast, Uranus's inner rings appear grey.

Although the Uranian rings are very difficult to directly observe from Earth, advances in digital imaging have allowed several amateur astronomers to successfully photograph the rings with red or infrared filters; telescopes with apertures as small as 36 cm (14 inches) may be able to detect the rings with proper imaging equipment.

Exploration

Main article: Exploration of Uranus
Uranus as seen from the Cassini spacecraft at Saturn

Launched in 1977, Voyager 2 made its closest approach to Uranus on 24 January 1986, coming within 81,500 km (50,600 mi) of the cloudtops, before continuing its journey to Neptune. The spacecraft studied the structure and chemical composition of Uranus's atmosphere, including its unique weather, caused by its extreme axial tilt. It made the first detailed investigations of its five largest moons and discovered 10 new ones. Voyager 2 examined all nine of the system's known rings and discovered two more. It also studied the magnetic field, its irregular structure, its tilt and its unique corkscrew magnetotail caused by Uranus's sideways orientation.

No other spacecraft has flown by Uranus since then, though there have been many proposed missions to revisit the Uranus system. The possibility of sending the Cassini spacecraft from Saturn to Uranus was evaluated during a mission extension planning phase in 2009, but was ultimately rejected in favour of destroying it in the Saturnian atmosphere, as it would have taken about twenty years to get to the Uranian system after departing Saturn. A Uranus entry probe could use Pioneer Venus Multiprobe heritage and descend to 1–5 atmospheres. A Uranus orbiter and probe was recommended by the 2013–2022 Planetary Science Decadal Survey published in 2011; the proposal envisaged launch during 2020–2023 and a 13-year cruise to Uranus. The committee's opinion was reaffirmed in 2022, when a Uranus probe/orbiter mission was placed at the highest priority, due to the lack of knowledge about ice giants. Most recently, the CNSA's Tianwen-4 Jupiter orbiter, launching in 2029, is planned to have a subprobe that will detach and get a gravity assist instead of entering orbit, flying by Uranus in March 2045 before heading to interstellar space. China also has plans for a potential Tianwen-5 that may orbit either Uranus or Neptune that have yet to come to fruition.

In culture

See also

Notes

  1. Based on Irwin, Patrick G J; Dobinson, Jack; James, Arjuna; Teanby, Nicholas A; Simon, Amy A; Fletcher, Leigh N; Roman, Michael T; Orton, Glenn S; Wong, Michael H; Toledo, Daniel; Pérez-Hoyos, Santiago; Beck, Julie (23 December 2023). "Modelling the seasonal cycle of Uranus's colour and magnitude, and comparison with Neptune". Monthly Notices of the Royal Astronomical Society. 527 (4): 11521–11538. doi:10.1093/mnras/stad3761. hdl:20.500.11850/657542. ISSN 0035-8711.
  2. These are the mean elements from VSOP87, together with derived quantities.
  3. ^ Refers to the level of 1 bar atmospheric pressure.
  4. Calculated using data from Seidelmann, 2007.
  5. Based on the volume within the level of 1 bar atmospheric pressure.
  6. Calculation of He, H2 and CH4 molar fractions is based on a 2.3% mixing ratio of methane to hydrogen and the 15/85 He/H2 proportions measured at the tropopause.
  7. Because, in the English-speaking world, the latter sounds like "your anus", the former pronunciation also saves embarrassment: as Pamela Gay, an astronomer at Southern Illinois University Edwardsville, noted on her podcast, to avoid "being made fun of by any small schoolchildren ... when in doubt, don't emphasise anything and just say /ˈjʊərənəs/. And then run, quickly."
  8. Cf. ⛢ (not supported by all fonts)
  9. Cf. ♅ (not supported by all fonts)
  10. Mixing ratio is defined as the number of molecules of a compound per a molecule of hydrogen.

References

  1. ^ Because the vowel a is short in both Greek and Latin, the former pronunciation, /ˈjʊərənəs/, is the expected one. The BBC Pronunciation Unit notes that this pronunciation "is the preferred usage of astronomers": Holmquist Olausson, Lena; Sangster, Catherine, eds. (2006). Oxford BBC Guide to Pronunciation: The Essential Handbook of the Spoken Word. Oxford: Oxford University Press. p. 404. ISBN 978-0-19-280710-6.
  2. ^ "Uranus". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
  3. "Uranian". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
  4. Simon, J.L.; Bretagnon, P.; Chapront, J.; Chapront-Touzé, M.; Francou, G.; Laskar, J. (February 1994). "Numerical expressions for precession formulae and mean elements for the Moon and planets". Astronomy and Astrophysics. 282 (2): 663–683. Bibcode:1994A&A...282..663S.
  5. ^ Munsell, Kirk (14 May 2007). "NASA: Solar System Exploration: Planets: Uranus: Facts & Figures". NASA. Archived from the original on 14 December 2003. Retrieved 13 August 2007.
  6. ^ Seligman, Courtney. "Rotation Period and Day Length". Archived from the original on 28 July 2011. Retrieved 13 August 2009.
  7. ^ Williams, Dr. David R. (31 January 2005). "Uranus Fact Sheet". NASA. Archived from the original on 13 July 2017. Retrieved 10 August 2007.
  8. Souami, D.; Souchay, J. (July 2012). "The solar system's invariable plane". Astronomy & Astrophysics. 543: 11. Bibcode:2012A&A...543A.133S. doi:10.1051/0004-6361/201219011. A133.
  9. Jean Meeus, Astronomical Algorithms (Richmond, Virginia: Willmann-Bell, 1998) p271. Bretagnon's complete VSOP87 model. It gives the 17th @ 18.283075301au. http://vo.imcce.fr/webservices/miriade/?forms Archived 7 September 2021 at the Wayback Machine IMCCE Observatoire de Paris / CNRS Calculated for a series of dates, five or ten days apart, in August 2050, using an interpolation formula from Astronomical Algorithms. Perihelion came very early on the 17th. INPOP planetary theory
  10. "HORIZONS Planet-center Batch call for August 2050 Perihelion". ssd.jpl.nasa.gov (Perihelion for Uranus planet-center (799) occurs on 2050-Aug-19 at 18.28307512au during a rdot flip from negative to positive). NASA/JPL. Archived from the original on 7 September 2021. Retrieved 7 September 2021.
  11. ^ Seidelmann, P. Kenneth; Archinal, Brent A.; A'Hearn, Michael F.; et al. (2007). "Report of the IAU/IAG Working Group on cartographic coordinates and rotational elements: 2006". Celestial Mechanics and Dynamical Astronomy. 98 (3): 155–180. Bibcode:2007CeMDA..98..155S. doi:10.1007/s10569-007-9072-y. S2CID 122772353.
  12. ^ Jacobson, R. A.; Campbell, J. K.; Taylor, A. H.; Synnott, S. P. (June 1992). "The masses of Uranus and its major satellites from Voyager tracking data and earth-based Uranian satellite data". The Astronomical Journal. 103 (6): 2068–2078. Bibcode:1992AJ....103.2068J. doi:10.1086/116211.
  13. de Pater, Imke; Lissauer, Jack J. (2015). Planetary Sciences (2nd updated ed.). New York: Cambridge University Press. p. 250. ISBN 978-0521853712. Archived from the original on 26 November 2016. Retrieved 17 August 2016.
  14. ^ Archinal, B. A.; Acton, C. H.; A'Hearn, M. F.; Conrad, A.; Consolmagno, G. J.; Duxbury, T.; Hestroffer, D.; Hilton, J. L.; Kirk, R. L.; Klioner, S. A.; McCarthy, D.; Meech, K.; Oberst, J.; Ping, J.; Seidelmann, P. K. (2018). "Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2015". Celestial Mechanics and Dynamical Astronomy. 130 (3): 22. Bibcode:2018CeMDA.130...22A. doi:10.1007/s10569-017-9805-5. ISSN 0923-2958.
  15. Pearl, J.C.; et al. (1990). "The albedo, effective temperature, and energy balance of Uranus, as determined from Voyager IRIS data". Icarus. 84 (1): 12–28. Bibcode:1990Icar...84...12P. doi:10.1016/0019-1035(90)90155-3.
  16. Mallama, Anthony; Krobusek, Bruce; Pavlov, Hristo (2017). "Comprehensive wide-band magnitudes and albedos for the planets, with applications to exo-planets and Planet Nine". Icarus. 282: 19–33. arXiv:1609.05048. Bibcode:2017Icar..282...19M. doi:10.1016/j.icarus.2016.09.023. S2CID 119307693.
  17. ^ Podolak, M.; Weizman, A.; Marley, M. (December 1995). "Comparative models of Uranus and Neptune". Planetary and Space Science. 43 (12): 1517–1522. Bibcode:1995P&SS...43.1517P. doi:10.1016/0032-0633(95)00061-5.
  18. ^ Lunine, Jonathan I. (September 1993). "The Atmospheres of Uranus and Neptune". Annual Review of Astronomy and Astrophysics. 31: 217–263. Bibcode:1993ARA&A..31..217L. doi:10.1146/annurev.aa.31.090193.001245.
  19. ^ Mallama, A.; Hilton, J.L. (October 2018). "Computing apparent planetary magnitudes for The Astronomical Almanac". Astronomy and Computing. 25: 10–24. arXiv:1808.01973. Bibcode:2018A&C....25...10M. doi:10.1016/j.ascom.2018.08.002. S2CID 69912809.
  20. "Encyclopedia - the brightest bodies". IMCCE. Archived from the original on 24 July 2023. Retrieved 29 May 2023.
  21. ^ Lindal, G. F.; Lyons, J. R.; Sweetnam, D. N.; Eshleman, V. R.; Hinson, D. P.; Tyler, G. L. (30 December 1987). "The Atmosphere of Uranus: Results of Radio Occultation Measurements with Voyager 2". Journal of Geophysical Research. 92 (A13): 14, 987–15, 001. Bibcode:1987JGR....9214987L. doi:10.1029/JA092iA13p14987. ISSN 0148-0227.
  22. ^ Conrath, B.; Gautier, D.; Hanel, R.; Lindal, G.; Marten, A. (1987). "The Helium Abundance of Uranus from Voyager Measurements". Journal of Geophysical Research. 92 (A13): 15003–15010. Bibcode:1987JGR....9215003C. doi:10.1029/JA092iA13p15003.
  23. ^ Sromovsky, L. A.; Fry, P. M. (December 2005). "Dynamics of cloud features on Uranus". Icarus. 179 (2): 459–484. arXiv:1503.03714. Bibcode:2005Icar..179..459S. doi:10.1016/j.icarus.2005.07.022.
  24. "Exploration | Uranus". NASA Solar System Exploration. 10 November 2017. Archived from the original on 7 August 2020. Retrieved 8 February 2020. Jan. 24, 1986: NASA's Voyager 2 made the first - and so far the only - visit to Uranus.
  25. ^ Jones, Andrew (21 December 2023). "China's plans for outer Solar System exploration". The Planetary Society. Archived from the original on 31 December 2023. Retrieved 24 January 2024.
  26. "MIRA's Field Trips to the Stars Internet Education Program". Monterey Institute for Research in Astronomy. Archived from the original on 1 May 2021. Retrieved 5 May 2021.
  27. Bourtembourg, René (November 2013). "Was Uranus Observed by Hipparchus?". Journal for the History of Astronomy. 44 (4): 377–387. Bibcode:2013JHA....44..377B. doi:10.1177/002182861304400401. ISSN 0021-8286. S2CID 122482074.
  28. Dunkerson, Duane. "Uranus – About Saying, Finding, and Describing It". Astronomy Briefly. thespaceguy.com. Archived from the original on 10 August 2011. Retrieved 5 May 2021.
  29. "Bath Preservation Trust". Archived from the original on 29 September 2018. Retrieved 29 September 2007.
  30. Herschel, W.; Watson, Dr. (1781). "Account of a Comet. By Mr. Herschel, F. R. S.; Communicated by Dr. Watson, Jun. of Bath, F. R. S.". Philosophical Transactions of the Royal Society of London Series I. 71: 492–501. Bibcode:1781RSPT...71..492H. doi:10.1098/rstl.1781.0056. S2CID 186208953.
  31. ^ Journal of the Royal Society and Royal Astronomical Society 1, 30, quoted in Miner, p. 8.
  32. "Ice Giants: The Discovery of Nepture and Uranus". Sky & Telescope. American Astronomical Society. 29 July 2020. Archived from the original on 22 November 2020. Retrieved 21 November 2020.
  33. Royal Astronomical Society MSS W.2/1.2, 23; quoted in Miner p. 8.
  34. RAS MSS Herschel W.2/1.2, 24, quoted in Miner p. 8.
  35. RAS MSS Herschel W1/13.M, 14 quoted in Miner p. 8.
  36. ^ Lexell, A. J. (1783). "Recherches sur la nouvelle Planète, découverte par Mr. Herschel et nommé Georgium Sidus (part 1)". Acta Academiae Scientiarum Imperialis Petropolitanae: 303–329.
  37. Johann Elert Bode, Berliner Astronomisches Jahrbuch, p. 210, 1781, quoted in Miner, p. 11.
  38. Miner, p. 11.
  39. ^ Dreyer, J. L. E. (1912). The Scientific Papers of Sir William Herschel. Vol. 1. Royal Society and Royal Astronomical Society. p. 100. ISBN 978-1-84371-022-6.
  40. UK Retail Price Index inflation figures are based on data from Clark, Gregory (2017). "The Annual RPI and Average Earnings for Britain, 1209 to Present (New Series)". MeasuringWorth. Retrieved 7 May 2024.
  41. ^ Miner, p. 12
  42. Cain, Frasier (12 November 2007). "Uranus". AstronomyCast. Archived from the original on 26 April 2009. Retrieved 20 April 2009.
  43. RAS MSS Herschel W.1/12.M, 20, quoted in Miner, p. 12
  44. "Voyager at Uranus". NASA JPL. 7 (85): 400–268. 1986. Archived from the original on 10 February 2006.
  45. ^ Herschel, Francisca (1917). "The meaning of the symbol H+o for the planet Uranus". The Observatory. 40: 306. Bibcode:1917Obs....40..306H.
  46. ^ Gingerich, O. (1958). "The Naming of Uranus and Neptune, Astronomical Society of the Pacific Leaflets, Vol. 8, No. 352, p.9". Leaflet of the Astronomical Society of the Pacific. 8 (352): 9. Bibcode:1958ASPL....8....9G. Archived from the original on 1 June 2023. Retrieved 1 June 2023.
  47. ^ Bode 1784, pp. 88–90: :

    Bereits in der am 12ten März 1782 bei der hiesigen naturforschenden Gesellschaft vorgelesenen Abhandlung, habe ich den Namen des Vaters vom Saturn, nemlich Uranos, oder wie er mit der lateinischen Endung gewöhnlicher ist, Uranus vorgeschlagen, und habe seit dem das Vergnügen gehabt, daß verschiedene Astronomen und Mathematiker in ihren Schriften oder in Briefen an mich, diese Benennung aufgenommen oder gebilligt. Meines Erachtens muß man bei dieser Wahl die Mythologie befolgen, aus welcher die uralten Namen der übrigen Planeten entlehnen worden; denn in der Reihe der bisher bekannten, würde der von einer merkwürdigen Person oder Begebenheit der neuern Zeit wahrgenommene Name eines Planeten sehr auffallen. Diodor von Cicilien erzahlt die Geschichte der Atlanten, eines uralten Volks, welches eine der fruchtbarsten Gegenden in Africa bewohnte, und die Meeresküsten seines Landes als das Vaterland der Götter ansah. Uranus war ihr, erster König, Stifter ihres gesitteter Lebens und Erfinder vieler nützlichen Künste. Zugleich wird er auch als ein fleißiger und geschickter Himmelsforscher des Alterthums beschrieben... Noch mehr: Uranus war der Vater des Saturns und des Atlas, so wie der erstere der Vater des Jupiters.

    :

    Already in the pre-read at the local Natural History Society on 12th March 1782 treatise, I have the father's name from Saturn, namely Uranos, or as it is usually with the Latin suffix, proposed Uranus, and have since had the pleasure that various astronomers and mathematicians, cited in their writings or letters to me approving this designation. In my view, it is necessary to follow the mythology in this election, which had been borrowed from the ancient name of the other planets; because in the series of previously known, perceived by a strange person or event of modern times name of a planet would very noticeable. Diodorus of Cilicia tells the story of Atlas, an ancient people that inhabited one of the most fertile areas in Africa, and looked at the sea shores of his country as the homeland of the gods. Uranus was her first king, founder of their civilized life and inventor of many useful arts. At the same time he is also described as a diligent and skilful astronomers of antiquity ... even more: Uranus was the father of Saturn and the Atlas, as the former is the father of Jupiter.

  48. ^ Littmann, Mark (2004). Planets Beyond: Discovering the Outer Solar System. Courier Dover Publications. pp. 10–11. ISBN 978-0-486-43602-9.
  49. Daugherty, Brian. "Astronomy in Berlin". Brian Daugherty. Archived from the original on 8 October 2014. Retrieved 24 May 2007.
  50. Finch, James (2006). "The Straight Scoop on Uranium". AllChemicals. Archived from the original on 21 December 2008. Retrieved 30 March 2009.
  51. ^ Astronomisches Jahrbuch für das Jahr 1785. George Jacob Decker, Berlin, p. 191.
  52. Chen, Jingjing; Kipping, David (2017). "Probabilistic Forecasting of the Masses and Radii of Other Worlds". The Astrophysical Journal. 834 (1): 17. arXiv:1603.08614. Bibcode:2017ApJ...834...17C. doi:10.3847/1538-4357/834/1/17. ISSN 0004-637X.
  53. Solar System Symbols Archived 18 March 2021 at the Wayback Machine, NASA/JPL
  54. Craig, Daniel (20 June 2017). "Very nice job with these Uranus headlines, everyone". The Philly Voice. Philadelphia. Archived from the original on 28 August 2017. Retrieved 27 August 2017.
  55. De Groot, Jan Jakob Maria (1912). Religion in China: universism. a key to the study of Taoism and Confucianism. American lectures on the history of religions. Vol. 10. G. P. Putnam's Sons. p. 300. Archived from the original on 22 July 2011. Retrieved 8 January 2010.
  56. Crump, Thomas (1992). The Japanese numbers game: the use and understanding of numbers in modern Japan. Routledge. pp. 39–40. ISBN 978-0-415-05609-0.
  57. Hulbert, Homer Bezaleel (1909). The passing of Korea. Doubleday, Page & company. p. 426. Retrieved 8 January 2010.
  58. "Asian Astronomy 101". Hamilton Amateur Astronomers. 4 (11). 1997. Archived from the original on 14 May 2003. Retrieved 5 August 2007.
  59. "Hawaiian Dictionary, Mary Kawena Pukui, Samuel H. Elbert". Archived from the original on 30 August 2021. Retrieved 18 December 2018.
  60. ^ Thommes, Edward W.; Duncan, Martin J.; Levison, Harold F. (December 1999). "The formation of Uranus and Neptune in the Jupiter–Saturn region of the Solar System" (PDF). Nature. 402 (6762): 635–638. Bibcode:1999Natur.402..635T. doi:10.1038/45185. ISSN 0028-0836. PMID 10604469. S2CID 4368864. Archived (PDF) from the original on 21 May 2019. Retrieved 10 August 2007.
  61. ^ Brunini, Adrián; Fernández, Julio A (May 1999). "Numerical simulations of the accretion of Uranus and Neptune". Planetary and Space Science. 47 (5): 591–600. Bibcode:1999P&SS...47..591B. doi:10.1016/S0032-0633(98)00140-8.
  62. D'Angelo, Gennaro; Weidenschilling, Stuart J.; Lissauer, Jack J.; Bodenheimer, Peter (February 2021). "Growth of Jupiter: Formation in disks of gas and solids and evolution to the present epoch". Icarus. 355: 114087. arXiv:2009.05575. Bibcode:2021Icar..35514087D. doi:10.1016/j.icarus.2020.114087. S2CID 221654962.
  63. D'Angelo, Gennaro; Bodenheimer, Peter (6 November 2013). "Three-dimensional Radiation-hydrodynamics Calculations of the Envelopes of Young Planets Embedded in Protoplanetary Disks". The Astrophysical Journal. 778 (1): 77. arXiv:1310.2211. Bibcode:2013ApJ...778...77D. doi:10.1088/0004-637X/778/1/77. ISSN 0004-637X. S2CID 118522228.
  64. D'Angelo, G.; Lissauer, J. J. (2018). "Formation of Giant Planets". In Deeg, H.; Belmonte, J. (eds.). Handbook of Exoplanets. Springer International Publishing AG. pp. 2319–2343. arXiv:1806.05649. Bibcode:2018haex.bookE.140D. doi:10.1007/978-3-319-55333-7_140. ISBN 978-3-319-55332-0. S2CID 116913980.
  65. Sheppard, S. S.; Jewitt, D.; Kleyna, J. (2005). "An Ultradeep Survey for Irregular Satellites of Uranus: Limits to Completeness". The Astronomical Journal. 129 (1): 518. arXiv:astro-ph/0410059. Bibcode:2005AJ....129..518S. doi:10.1086/426329. S2CID 18688556.
  66. McKie, Robin (16 July 2022). "Journey to the mystery planet: why Uranus is the new target for space exploration". The Observer. ISSN 0029-7712. Archived from the original on 6 January 2024. Retrieved 28 April 2024.
  67. Fahad, Engr (26 December 2022). "Uranus Size and Uranus Distance from the Sun". Electronic Clinic. Archived from the original on 1 March 2023. Retrieved 28 April 2024.
  68. Jean Meeus, Astronomical Algorithms (Richmond, VA: Willmann-Bell, 1998) p 271. From the 1841 aphelion to the 2092 one, perihelia are always 18.28 and aphelia always 20.10 astronomical units
  69. "Next Stop: Uranus". The Universe in the Classroom. Astronomical Society of the Pacific. 1986. Archived from the original on 4 May 2021. Retrieved 4 May 2021.
  70. Forbes, George (1909). "History of Astronomy". Archived from the original on 7 November 2015. Retrieved 7 August 2007.
  71. O'Connor, J J. & Robertson, E. F. (September 1996). "Mathematical discovery of planets". MacTutor. Archived from the original on 20 August 2011. Retrieved 13 June 2007.
  72. Gierasch, Peter J. & Nicholson, Philip D. (2004). "Uranus" (PDF). World Book. Archived (PDF) from the original on 2 April 2015. Retrieved 8 March 2015.
  73. "Coordinate Frames Used in MASL". 2003. Archived from the original on 4 December 2004. Retrieved 13 June 2007.
  74. Sromovsky, Lawrence (2006). "Hubble captures rare, fleeting shadow on Uranus". University of Wisconsin Madison. Archived from the original on 20 July 2011. Retrieved 9 June 2007.
  75. Bergstralh, Jay T.; Miner, Ellis D.; Matthews, Mildred Shapley, eds. (1991). Uranus. Tucson: University of Arizona Press. pp. 485–486. ISBN 978-0-8165-1208-9.
  76. Borenstein, Seth (21 December 2018). "Science Says: A big space crash likely made Uranus lopsided". Associated Press. Archived from the original on 19 January 2019. Retrieved 17 January 2019.
  77. Seidelmann, P. K.; Abalakin, V. K.; Bursa, M.; Davies, M. E.; De Bergh, C.; Lieske, J. H.; Oberst, J.; Simon, J. L.; Standish, E. M.; Stooke, P.; Thomas, P. C. (2000). "Report of the IAU/IAG working group on cartographic coordinates and rotational elements of the planets and satellites: 2000". Celestial Mechanics and Dynamical Astronomy. 82 (1): 83. Bibcode:2002CeMDA..82...83S. doi:10.1023/A:1013939327465. S2CID 189823009. Archived from the original on 12 May 2020. Retrieved 13 June 2007.
  78. "Cartographic Standards" (PDF). NASA. Archived from the original (PDF) on 7 April 2004. Retrieved 13 June 2007.
  79. Hammel, Heidi B. (5 September 2006). "Uranus nears Equinox" (PDF). A report from the 2006 Pasadena Workshop. Archived from the original (PDF) on 25 February 2009.
  80. Schmude, Richard W.; Baker, Ronald E.; Fox, Jim; Krobusek, Bruce A.; Mallama, Anthony (2015). "Large Brightness Variations of Uranus at Red and Near-IR Wavelengths". Earth and Planetary Astrophysics. arXiv:1510.04175.
  81. Espenak, Fred (2005). "Twelve Year Planetary Ephemeris: 1995–2006". NASA. Archived from the original on 26 June 2007. Retrieved 14 June 2007.
  82. Nowak, Gary T. (2006). "Uranus: the Threshold Planet of 2006". Vtastro.org. Archived from the original on 27 July 2011. Retrieved 14 June 2007.
  83. ^ Podolak, M.; Podolak, J. I.; Marley, M. S. (February 2000). "Further investigations of random models of Uranus and Neptune". Planetary and Space Science. 48 (2–3): 143–151. Bibcode:2000P&SS...48..143P. doi:10.1016/S0032-0633(99)00088-4. Archived from the original on 21 December 2019. Retrieved 25 August 2019.
  84. ^ Faure, Gunter; Mensing, Teresa M. (2007). "Uranus: What Happened Here?". Introduction to Planetary Science. Springer Netherlands. pp. 369–384. doi:10.1007/978-1-4020-5544-7_18. ISBN 978-1-4020-5233-0.
  85. ^ Atreya, S.; Egeler, P.; Baines, K. (2006). "Water-ammonia ionic ocean on Uranus and Neptune?" (PDF). Geophysical Research Abstracts. 8: 05179. Archived (PDF) from the original on 18 September 2019. Retrieved 22 August 2007.
  86. "Is It Raining Diamonds on Uranus". Space Daily. 1 October 1999. Archived from the original on 22 May 2013. Retrieved 17 May 2013.
  87. Kraus, D.; et al. (September 2017). "Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions" (PDF). Nature Astronomy. 1 (9): 606–611. Bibcode:2017NatAs...1..606K. doi:10.1038/s41550-017-0219-9. S2CID 46945778. Archived (PDF) from the original on 25 July 2018. Retrieved 23 October 2018.
  88. Kane, Sean (29 April 2016). "Lightning storms make it rain diamonds on Saturn and Jupiter". Business Insider. Archived from the original on 26 June 2019. Retrieved 22 May 2019.
  89. Kaplan, Sarah (25 March 2017). "It rains solid diamonds on Uranus and Neptune". The Washington Post. Archived from the original on 27 August 2017. Retrieved 22 May 2019.
  90. Eggert, J. H.; Hicks, D. G.; Celliers, P. M.; Bradley, D. K.; McWilliams, R. S.; Jeanloz, R.; Miller, J. E.; Boehly, T. R.; Collins, G. W.; et al. (January 2010). "Melting temperature of diamond at ultrahigh pressure". Nature Physics. 6 (1): 40–43. Bibcode:2010NatPh...6...40E. doi:10.1038/nphys1438. ISSN 1745-2473.
  91. ^ Bland, Eric (18 January 2010). "Outer planets may have oceans of diamond". ABC Science. Archived from the original on 15 June 2020. Retrieved 9 October 2017.
  92. Baldwin, Emily (21 January 2010). "Oceans of diamond possible on Uranus and Neptune". Astronomy Now. Archived from the original on 3 December 2013. Retrieved 6 February 2014.
  93. Shiga, David (1 September 2010). "Weird water lurking inside giant planets". New Scientist. No. 2776. Archived from the original on 12 February 2018. Retrieved 11 February 2018.
  94. ^ Hanel, R.; Conrath, B.; Flasar, F. M.; Kunde, V.; Maguire, W.; Pearl, J.; Pirraglia, J.; Samuelson, R.; Cruikshank, D. (4 July 1986). "Infrared Observations of the Uranian System". Science. 233 (4759): 70–74. Bibcode:1986Sci...233...70H. doi:10.1126/science.233.4759.70. PMID 17812891. S2CID 29994902.
  95. ^ Pearl, J. C.; Conrath, B. J.; Hanel, R. A.; Pirraglia, J. A.; Coustenis, A. (March 1990). "The albedo, effective temperature, and energy balance of Uranus, as determined from Voyager IRIS data". Icarus. 84 (1): 12–28. Bibcode:1990Icar...84...12P. doi:10.1016/0019-1035(90)90155-3. ISSN 0019-1035.
  96. Hawksett, David (2005). "Ten Mysteries of the Solar System: Why is Uranus So Cold?". Astronomy Now. p. 73.
  97. Taehyun, Kim; et al. (2021). "Atomic-scale mixing between MgO and H2O in the deep interiors of water-rich planets" (PDF). Nature Astronomy. 5 (8): 815–821. Bibcode:2021NatAs...5..815K. doi:10.1038/s41550-021-01368-2. S2CID 238984160. Archived (PDF) from the original on 26 February 2024. Retrieved 20 May 2021.
  98. ^ de Pater, Imke; Romani, Paul N.; Atreya, Sushil K. (June 1991). "Possible microwave absorption by H2S gas in Uranus' and Neptune's atmospheres" (PDF). Icarus. 91 (2): 220–233. Bibcode:1991Icar...91..220D. doi:10.1016/0019-1035(91)90020-T. hdl:2027.42/29299. ISSN 0019-1035. Archived (PDF) from the original on 6 June 2011. Retrieved 7 August 2007.
  99. ^ Herbert, F.; Sandel, B. R.; Yelle, R. V.; Holberg, J. B.; Broadfoot, A. L.; Shemansky, D. E.; Atreya, S. K.; Romani, P. N. (30 December 1987). "The Upper Atmosphere of Uranus: EUV Occultations Observed by Voyager 2" (PDF). Journal of Geophysical Research. 92 (A13): 15, 093–15, 109. Bibcode:1987JGR....9215093H. doi:10.1029/JA092iA13p15093. Archived (PDF) from the original on 6 June 2011. Retrieved 7 August 2007.
  100. Lodders, Katharina (10 July 2003). "Solar System Abundances and Condensation Temperatures of the Elements" (PDF). The Astrophysical Journal. 591 (2): 1220–1247. Bibcode:2003ApJ...591.1220L. doi:10.1086/375492. S2CID 42498829. Archived from the original (PDF) on 7 November 2015. Retrieved 1 September 2015.
  101. ^ Tyler, J.L.; Sweetnam, D.N.; Anderson, J.D.; Campbell, J. K.; Eshleman, V. R.; Hinson, D. P.; Levy, G. S.; Lindal, G. F.; Marouf, E. A.; Simpson, R. A. (1986). "Voyager 2 Radio Science Observations of the Uranian System: Atmosphere, Rings, and Satellites". Science. 233 (4759): 79–84. Bibcode:1986Sci...233...79T. doi:10.1126/science.233.4759.79. PMID 17812893. S2CID 1374796.
  102. ^ Bishop, J.; Atreya, S. K.; Herbert, F.; Romani, P. (December 1990). "Reanalysis of voyager 2 UVS occultations at Uranus: Hydrocarbon mixing ratios in the equatorial stratosphere" (PDF). Icarus. 88 (2): 448–464. Bibcode:1990Icar...88..448B. doi:10.1016/0019-1035(90)90094-P. hdl:2027.42/28293. Archived (PDF) from the original on 18 September 2019. Retrieved 7 August 2007.
  103. de Pater, I.; Romani, P. N.; Atreya, S. K. (December 1989). "Uranius Deep Atmosphere Revealed" (PDF). Icarus. 82 (2): 288–313. Bibcode:1989Icar...82..288D. CiteSeerX 10.1.1.504.149. doi:10.1016/0019-1035(89)90040-7. hdl:2027.42/27655. ISSN 0019-1035. Archived (PDF) from the original on 6 June 2011. Retrieved 7 August 2007.
  104. ^ Summers, M. E.; Strobel, D. F. (1 November 1989). "Photochemistry of the atmosphere of Uranus". The Astrophysical Journal. 346: 495–508. Bibcode:1989ApJ...346..495S. doi:10.1086/168031. ISSN 0004-637X.
  105. ^ Burgdorf, M.; Orton, G.; Vancleve, J.; Meadows, V.; Houck, J. (October 2006). "Detection of new hydrocarbons in Uranus' atmosphere by infrared spectroscopy". Icarus. 184 (2): 634–637. Bibcode:2006Icar..184..634B. doi:10.1016/j.icarus.2006.06.006.
  106. ^ Encrenaz, Thérèse (February 2003). "ISO observations of the giant planets and Titan: what have we learnt?". Planetary and Space Science. 51 (2): 89–103. Bibcode:2003P&SS...51...89E. doi:10.1016/S0032-0633(02)00145-9.
  107. ^ Encrenaz, T.; Lellouch, E.; Drossart, P.; Feuchtgruber, H.; Orton, G. S.; Atreya, S. K. (January 2004). "First detection of CO in Uranus" (PDF). Astronomy and Astrophysics. 413 (2): L5 – L9. Bibcode:2004A&A...413L...5E. doi:10.1051/0004-6361:20034637. Archived (PDF) from the original on 23 September 2011. Retrieved 28 August 2007.
  108. Atreya, Sushil K.; Wong, Ah-San (2005). "Coupled Clouds and Chemistry of the Giant Planets – A Case for Multiprobes" (PDF). Space Science Reviews. 116 (1–2): 121–136. Bibcode:2005SSRv..116..121A. doi:10.1007/s11214-005-1951-5. hdl:2027.42/43766. ISSN 0032-0633. S2CID 31037195. Archived (PDF) from the original on 22 July 2011. Retrieved 1 September 2015.
  109. "Adding to Uranus's legacy". www.spacetelescope.org. Archived from the original on 12 February 2019. Retrieved 11 February 2019.
  110. ^ Young, Leslie A.; Bosh, Amanda S.; Buie, Marc; Elliot, J. L.; Wasserman, Lawrence H. (2001). "Uranus after Solstice: Results from the 1998 November 6 Occultation" (PDF). Icarus. 153 (2): 236–247. Bibcode:2001Icar..153..236Y. CiteSeerX 10.1.1.8.164. doi:10.1006/icar.2001.6698. Archived (PDF) from the original on 10 October 2019. Retrieved 7 August 2007.
  111. ^ Herbert, Floyd; Sandel, Bill R. (August–September 1999). "Ultraviolet observations of Uranus and Neptune". Planetary and Space Science. 47 (8–9): 1, 119–1, 139. Bibcode:1999P&SS...47.1119H. doi:10.1016/S0032-0633(98)00142-1.
  112. Trafton, L. M.; Miller, S.; Geballe, T. R.; Tennyson, J.; Ballester, G. E. (October 1999). "H2 Quadrupole and H3 Emission from Uranus: The Uranian Thermosphere, Ionosphere, and Aurora". The Astrophysical Journal. 524 (2): 1, 059–1, 083. Bibcode:1999ApJ...524.1059T. doi:10.1086/307838.
  113. Encrenaz, T.; Drossart, P.; Orton, G.; Feuchtgruber, H.; Lellouch, E.; Atreya, S. K. (December 2003). "The rotational temperature and column density of H3 in Uranus" (PDF). Planetary and Space Science. 51 (14–15): 1013–1016. Bibcode:2003P&SS...51.1013E. doi:10.1016/j.pss.2003.05.010. Archived (PDF) from the original on 29 October 2015. Retrieved 7 August 2007.
  114. ^ Lam, H. A.; Miller, S.; Joseph, R. D.; Geballe, T. R.; Trafton, L. M.; Tennyson, J.; Ballester, G. E. (1 January 1997). "Variation in the H3 Emission of Uranus" (PDF). The Astrophysical Journal. 474 (1): L73 – L76. Bibcode:1997ApJ...474L..73L. doi:10.1086/310424. Archived (PDF) from the original on 3 March 2016. Retrieved 1 September 2015.
  115. ^ Smith, B. A.; Soderblom, L. A.; Beebe, A.; Bliss, D.; Boyce, J. M.; Brahic, A.; Briggs, G. A.; Brown, R. H.; Collins, S. A. (4 July 1986). "Voyager 2 in the Uranian System: Imaging Science Results". Science. 233 (4759): 43–64. Bibcode:1986Sci...233...43S. doi:10.1126/science.233.4759.43. PMID 17812889. S2CID 5895824. Archived from the original on 23 October 2018. Retrieved 23 October 2018.
  116. ^ Lakdawalla, Emily (2004). "No Longer Boring: 'Fireworks' and Other Surprises at Uranus Spotted Through Adaptive Optics". The Planetary Society. Archived from the original on 12 February 2012. Retrieved 13 June 2007.
  117. ^ Hammel, H. B.; De Pater, I.; Gibbard, S. G.; Lockwood, G. W.; Rages, K. (June 2005). "Uranus in 2003: Zonal winds, banded structure, and discrete features" (PDF). Icarus. 175 (2): 534–545. Bibcode:2005Icar..175..534H. doi:10.1016/j.icarus.2004.11.012. Archived from the original (PDF) on 25 October 2007. Retrieved 16 August 2007.
  118. ^ Rages, K. A.; Hammel, H. B.; Friedson, A. J. (11 September 2004). "Evidence for temporal change at Uranus' south pole". Icarus. 172 (2): 548–554. Bibcode:2004Icar..172..548R. doi:10.1016/j.icarus.2004.07.009.
  119. ^ Sromovsky, L. A.; Fry, P. M.; Hammel, H. B.; Ahue, W. M.; de Pater, I.; Rages, K. A.; Showalter, M. R.; van Dam, M. A. (September 2009). "Uranus at equinox: Cloud morphology and dynamics". Icarus. 203 (1): 265–286. arXiv:1503.01957. Bibcode:2009Icar..203..265S. doi:10.1016/j.icarus.2009.04.015. S2CID 119107838.
  120. Akins, Alex; Hofstadter, Mark; Butler, Bryan; Friedson, A. James; Molter, Edward; Parisi, Marzia; de Pater, Imke (28 May 2023). "Evidence of a Polar Cyclone on Uranus From VLA Observations". Geophysical Research Letters. 50 (10). arXiv:2305.15521. Bibcode:2023GeoRL..5002872A. doi:10.1029/2023GL102872. ISSN 0094-8276. S2CID 258883726.
  121. ^ Karkoschka, Erich (May 2001). "Uranus' Apparent Seasonal Variability in 25 HST Filters". Icarus. 151 (1): 84–92. Bibcode:2001Icar..151...84K. doi:10.1006/icar.2001.6599.
  122. ^ Hammel, H. B.; Depater, I.; Gibbard, S. G.; Lockwood, G. W.; Rages, K. (May 2005). "New cloud activity on Uranus in 2004: First detection of a southern feature at 2.2 μm" (PDF). Icarus. 175 (1): 284–288. Bibcode:2005Icar..175..284H. doi:10.1016/j.icarus.2004.11.016. OSTI 15016781. Archived from the original (PDF) on 27 November 2007. Retrieved 10 August 2007.
  123. ^ Sromovsky, L.; Fry, P.; Hammel, H. & Rages, K. "Hubble Discovers a Dark Cloud in the Atmosphere of Uranus" (PDF). physorg.com. Archived (PDF) from the original on 6 June 2011. Retrieved 22 August 2007.
  124. ^ Hammel, H.B.; Lockwood, G.W. (January 2007). "Long-term atmospheric variability on Uranus and Neptune". Icarus. 186 (1): 291–301. Bibcode:2007Icar..186..291H. doi:10.1016/j.icarus.2006.08.027.
  125. Hammel, H. B.; Rages, K.; Lockwood, G. W.; Karkoschka, E.; de Pater, I. (October 2001). "New Measurements of the Winds of Uranus". Icarus. 153 (2): 229–235. Bibcode:2001Icar..153..229H. doi:10.1006/icar.2001.6689.
  126. ^ Aplin, K.L.; Fischer, G.; Nordheim, T.A.; Konovalenko, A.; Zakharenko, V.; Zarka, P. (2020). "Atmospheric Electricity at the Ice Giants". Space Science Reviews. 216 (2): 26. arXiv:1907.07151. Bibcode:2020SSRv..216...26A. doi:10.1007/s11214-020-00647-0.
  127. ^ Zarka, P.; Pederson, B.M. (1986). "Radio detection of uranian lightning by Voyager 2". Nature. 323 (6089): 605–608. Bibcode:1986Natur.323..605Z. doi:10.1038/323605a0.
  128. ^ Aglyamov, Y.S.; Lunine, J.; Atreya, S.; Guillot, T.; Becker, H.N.; Levin, S.; Bolton, S.J. (2020). "Atmospheric Electricity at the Ice Giants". Space Science Reviews. 216 (2). arXiv:1907.07151. Bibcode:2020SSRv..216...26A. doi:10.1007/s11214-020-00647-0.
  129. Ferreira, Becky (4 January 2024). "Uranus and Neptune Reveal Their True Colors - Neptune is not as blue as you've been led to believe, and Uranus's shifting colors are better explained, in new research". The New York Times. Archived from the original on 5 January 2024. Retrieved 5 January 2024.
  130. Devitt, Terry (2004). "Keck zooms in on the weird weather of Uranus". University of Wisconsin-Madison. Archived from the original on 13 August 2011. Retrieved 24 December 2006.
  131. "Hubble Discovers Dark Cloud in the Atmosphere of Uranus". Science Daily. Archived from the original on 22 June 2019. Retrieved 16 April 2007.
  132. ^ Lockwood, G. W.; Jerzykiewicz, M. A. A. (February 2006). "Photometric variability of Uranus and Neptune, 1950–2004". Icarus. 180 (2): 442–452. Bibcode:2006Icar..180..442L. doi:10.1016/j.icarus.2005.09.009.
  133. Klein, M. J.; Hofstadter, M. D. (September 2006). "Long-term variations in the microwave brightness temperature of the Uranus atmosphere" (PDF). Icarus. 184 (1): 170–180. Bibcode:2006Icar..184..170K. doi:10.1016/j.icarus.2006.04.012. Archived from the original on 29 September 2021. Retrieved 4 November 2018.
  134. ^ Hofstadter, M. D.; Butler, B. J. (September 2003). "Seasonal change in the deep atmosphere of Uranus". Icarus. 165 (1): 168–180. Bibcode:2003Icar..165..168H. doi:10.1016/S0019-1035(03)00174-X.
  135. ^ Ness, Norman F.; Acuña, Mario H.; Behannon, Kenneth W.; Burlaga, Leonard F.; Connerney, John E. P.; Lepping, Ronald P.; Neubauer, Fritz M. (July 1986). "Magnetic Fields at Uranus". Science. 233 (4759): 85–89. Bibcode:1986Sci...233...85N. doi:10.1126/science.233.4759.85. PMID 17812894. S2CID 43471184.
  136. ^ Russell, C.T. (1993). "Planetary Magnetospheres". Rep. Prog. Phys. 56 (6): 687–732. Bibcode:1993RPPh...56..687R. doi:10.1088/0034-4885/56/6/001. S2CID 250897924.
  137. Maderer, Jason (26 June 2017). "Topsy-Turvy Motion Creates Light Switch Effect at Uranus". Georgia Tech. Archived from the original on 7 July 2017. Retrieved 8 July 2017.
  138. Stanley, Sabine; Bloxham, Jeremy (March 2004). "Convective-region geometry as the cause of Uranus' and Neptune's unusual magnetic fields" (PDF). Nature. 428 (6979): 151–153. Bibcode:2004Natur.428..151S. doi:10.1038/nature02376. ISSN 0028-0836. PMID 15014493. S2CID 33352017. Archived from the original (PDF) on 7 August 2007. Retrieved 5 August 2007.
  139. "Mining Old Data From NASA's Voyager 2 Solves Several Uranus Mysteries". NASA. 11 November 2024. Retrieved 26 December 2024.
  140. Jasinski, Jamie M.; Cochrane, Corey J.; Jia, Xianzhe; Dunn, William R.; Roussos, Elias; Nordheim, Tom A.; Regoli, Leonardo H.; Achilleos, Nick; Krupp, Norbert; Murphy, Neil (2024). "The anomalous state of Uranus's magnetosphere during the Voyager 2 flyby". Nature Astronomy: 1–9. Bibcode:2024NatAs.tmp..271J. doi:10.1038/s41550-024-02389-3. S2CID 273973089.{{cite journal}}: CS1 maint: bibcode (link)
  141. ^ Krimigis, S. M.; Armstrong, T. P.; Axford, W. I.; Cheng, A. F.; Gloeckler, G.; Hamilton, D. C.; Keath, E. P.; Lanzerotti, L. J.; Mauk, B. H. (4 July 1986). "The Magnetosphere of Uranus: Hot Plasma and Radiation Environment". Science. 233 (4759): 97–102. Bibcode:1986Sci...233...97K. doi:10.1126/science.233.4759.97. PMID 17812897. S2CID 46166768.
  142. "Voyager: Uranus: Magnetosphere". NASA. 2003. Archived from the original on 27 August 2011. Retrieved 13 June 2007.
  143. "Alien aurorae on Uranus". www.spacetelescope.org. Archived from the original on 3 April 2017. Retrieved 3 April 2017.
  144. Bridge, H.S.; Belcher, J.W.; Coppi, B.; Lazarus, A. J.; McNutt Jr, R. L.; Olbert, S.; Richardson, J. D.; Sands, M. R.; Selesnick, R. S.; Sullivan, J. D.; Hartle, R. E.; Ogilvie, K. W.; Sittler Jr, E. C.; Bagenal, F.; Wolff, R. S.; Vasyliunas, V. M.; Siscoe, G. L.; Goertz, C. K.; Eviatar, A. (1986). "Plasma Observations Near Uranus: Initial Results from Voyager 2". Science. 233 (4759): 89–93. Bibcode:1986Sci...233...89B. doi:10.1126/science.233.4759.89. PMID 17812895. S2CID 21453186. Archived from the original on 23 October 2018. Retrieved 23 October 2018.
  145. ^ "Voyager Uranus Science Summary". NASA/JPL. 1988. Archived from the original on 26 July 2011. Retrieved 9 June 2007.
  146. Thomas, Emma M.; Melin, Henrik; Stallard, Tom S.; Chowdhury, Mohammad N.; Wang, Ruoyan; Knowles, Katie; Miller, Steve (23 October 2023). "Detection of the infrared aurora at Uranus with Keck-NIRSPEC". Nature Astronomy. 7 (12): 1473–1480. arXiv:2311.06172. Bibcode:2023NatAs...7.1473T. doi:10.1038/s41550-023-02096-5. ISSN 2397-3366.
  147. Hatfield, Mike (25 March 2020). "Revisiting Decades-Old Voyager 2 Data, Scientists Find One More Secret - Eight and a half years into its grand tour of the solar system, NASA's Voyager 2 spacecraft was ready for another encounter. It was Jan. 24, 1986, and soon it would meet the mysterious seventh planet, icy-cold Uranus". NASA. Archived from the original on 27 March 2020. Retrieved 27 March 2020.
  148. Andrews, Robin George (27 March 2020). "Uranus Ejected a Giant Plasma Bubble During Voyager 2's Visit - The planet is shedding its atmosphere into the void, a signal that was recorded but overlooked in 1986 when the robotic spacecraft flew past". The New York Times. Archived from the original on 27 March 2020. Retrieved 27 March 2020.
  149. "New Uranus and Neptune Moons". Earth & Planetary Laboratory. Carnegie Institution for Science. 23 February 2024. Archived from the original on 23 February 2024. Retrieved 23 February 2024.
  150. "Uranus". nineplanets.org. Archived from the original on 11 August 2011. Retrieved 3 July 2007.
  151. Hussmann, H; Sohl, F; Spohn, T (November 2006). "Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects". Icarus. 185 (1): 258–273. Bibcode:2006Icar..185..258H. doi:10.1016/j.icarus.2006.06.005.
  152. Tittemore, William C.; Wisdom, Jack (June 1990). "Tidal evolution of the Uranian satellites: III. Evolution through the Miranda-Umbriel 3:1, Miranda-Ariel 5:3, and Ariel-Umbriel 2:1 mean-motion commensurabilities" (PDF). Icarus. 85 (2): 394–443. Bibcode:1990Icar...85..394T. doi:10.1016/0019-1035(90)90125-S. hdl:1721.1/57632. Archived from the original on 29 September 2021. Retrieved 25 August 2019.
  153. Pappalardo, R. T.; Reynolds, S. J.; Greeley, R. (1997). "Extensional tilt blocks on Miranda: Evidence for an upwelling origin of Arden Corona". Journal of Geophysical Research. 102 (E6): 13, 369–13, 380. Bibcode:1997JGR...10213369P. doi:10.1029/97JE00802. Archived from the original on 27 September 2012. Retrieved 8 December 2007.
  154. Chaikin, Andrew (16 October 2001). "Birth of Uranus's Provocative Moon Still Puzzles Scientists". Space.Com. ImaginovaCorp. Archived from the original on 9 July 2008. Retrieved 7 December 2007.
  155. Tittemore, W. C. (September 1990). "Tidal heating of Ariel". Icarus. 87 (1): 110–139. Bibcode:1990Icar...87..110T. doi:10.1016/0019-1035(90)90024-4.
  156. Gallardo, T. (2006). "Atlas of the mean motion resonances in the Solar System". Icarus. 184 (1): 29–38. Bibcode:2006Icar..184...29G. doi:10.1016/j.icarus.2006.04.001.
  157. ^ de la Fuente Marcos, C.; de la Fuente Marcos, R. (2013). "Crantor, a short-lived horseshoe companion to Uranus". Astronomy and Astrophysics. 551: A114. arXiv:1301.0770. Bibcode:2013A&A...551A.114D. doi:10.1051/0004-6361/201220646. S2CID 118531188. Archived from the original on 30 August 2021. Retrieved 29 September 2021.
  158. Esposito, L.W. (2002). "Planetary rings". Reports on Progress in Physics. 65 (12): 1741–1783. Bibcode:2002RPPh...65.1741E. doi:10.1088/0034-4885/65/12/201. ISBN 978-0-521-36222-1. S2CID 250909885.
  159. "Uranus rings 'were seen in 1700s'". BBC News. 19 April 2007. Archived from the original on 3 August 2012. Retrieved 19 April 2007.
  160. "Did William Herschel Discover The Rings of Uranus in the 18th Century?". Physorg.com. 2007. Archived from the original on 11 February 2012. Retrieved 20 June 2007.
  161. ^ Elliot, J. L.; Dunham, E.; Mink, D. (May 1977). "The rings of Uranus". Nature. 267 (5609): 328–330. Bibcode:1977Natur.267..328E. doi:10.1038/267328a0. ISSN 0028-0836. S2CID 4194104.
  162. "NASA's Hubble Discovers New Rings and Moons Around Uranus". Hubblesite. 2005. Archived from the original on 5 March 2012. Retrieved 9 June 2007.
  163. ^ de Pater, Imke; Hammel, Heidi B.; Gibbard, Seran G.; Showalter, Mark R. (7 April 2006). "New Dust Belts of Uranus: One Ring, Two Ring, Red Ring, Blue Ring" (PDF). Science. 312 (5770): 92–94. Bibcode:2006Sci...312...92D. doi:10.1126/science.1125110. ISSN 0036-8075. OSTI 957162. PMID 16601188. S2CID 32250745. Archived from the original (PDF) on 3 March 2019.
  164. Sanders, Robert (6 April 2006). "Blue ring discovered around Uranus". UC Berkeley News. Archived from the original on 6 March 2012. Retrieved 3 October 2006.
  165. Battersby, Stephen (April 2006). "Blue ring of Uranus linked to sparkling ice". New Scientist. Archived from the original on 4 June 2011. Retrieved 9 June 2007.
  166. "Amateur detection of Uranus' rings – British Astronomical Association". Archived from the original on 22 August 2023. Retrieved 22 August 2023.
  167. "Voyager: The Interstellar Mission: Uranus". JPL. 2004. Archived from the original on 7 August 2011. Retrieved 9 June 2007.
  168. ^ Spilker, Linda (1 April 2008). "Cassini Extended Missions" (PDF). Lunar and Planetary Institute. Archived (PDF) from the original on 30 August 2021. Retrieved 7 May 2021.
  169. ^ Space Studies Board (12 June 2019). "NRC planetary decadal survey 2013–2022". NASA Lunar Science Institute. Archived from the original on 21 July 2011. Retrieved 6 May 2021.
  170. "Planetary Science and Astrobiology Decadal Survey 2023-2032". National Academies. Archived from the original on 29 March 2021. Retrieved 17 May 2022.
  171. Parker, Derek; Parker, Julia (1996). Aquarius. Planetary Zodiac Library. DK Publishing. p. 12. ISBN 9780789410870.
  172. Hobart, David E. (23 July 2013). "Uranium". Periodic Table of the Elements. Los Alamos National Laboratory. Archived from the original on 12 May 2021. Retrieved 5 May 2021.
  173. Melani, Lilia (12 February 2009). "On First Looking into Chapman's Homer". City University of New York. Archived from the original on 12 April 2021. Retrieved 5 May 2021.

Further reading

External links

Uranus
Geography
Major moons
Astronomy
Discovery
General
Co-orbitals
Exploration
Past
Future
Proposals
Related
Solar System
The Sun, the planets, their moons, and several trans-Neptunian objectsThe SunMercuryVenusThe MoonEarthMarsPhobos and DeimosCeresThe main asteroid beltJupiterMoons of JupiterRings of JupiterSaturnMoons of SaturnRings of SaturnUranusMoons of UranusRings of UranusNeptuneMoons of NeptuneRings of NeptunePlutoMoons of PlutoHaumeaMoons of HaumeaMakemakeS/2015 (136472) 1The Kuiper BeltErisDysnomiaThe Scattered DiscThe Hills CloudThe Oort Cloud
Planets,
dwarfs,
minors
Moons
Formation,
evolution
,
contents,
and
History
Rings
Hypothetical
objects
Exploration
(outline)
Small
Solar
System
bodies
Lists
Related

Solar System → Local Interstellar Cloud → Local Bubble → Gould Belt → Orion Arm → Milky Way → Milky Way subgroup → Local GroupLocal SheetVirgo SuperclusterLaniakea Supercluster → Local Hole → Observable universe → Universe
Each arrow (→) may be read as "within" or "part of".

Portals: Categories:
Uranus Add topic