Misplaced Pages

Matrix-exponential distribution

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Matrix-exponential distributed) Absolutely continuous distribution with rational Laplace–Stieltjes transform
Matrix-exponential
Parameters α, T, s
Support x ∈ [0, ∞)
PDF α es
CDF 1 + αeTs

In probability theory, the matrix-exponential distribution is an absolutely continuous distribution with rational Laplace–Stieltjes transform. They were first introduced by David Cox in 1955 as distributions with rational Laplace–Stieltjes transforms.

The probability density function is f ( x ) = α e x T s  for  x 0 {\displaystyle f(x)=\mathbf {\alpha } e^{x\,T}\mathbf {s} {\text{ for }}x\geq 0} (and 0 when x < 0), and the cumulative distribution function is F ( t ) = 1 α e A t 1 {\displaystyle F(t)=1-\alpha e^{{\textbf {A}}t}{\textbf {1}}} where 1 is a vector of 1s and

α R 1 × n , T R n × n , s R n × 1 . {\displaystyle {\begin{aligned}\alpha &\in \mathbb {R} ^{1\times n},\\T&\in \mathbb {R} ^{n\times n},\\s&\in \mathbb {R} ^{n\times 1}.\end{aligned}}}

There are no restrictions on the parameters α, T, s other than that they correspond to a probability distribution. There is no straightforward way to ascertain if a particular set of parameters form such a distribution. The dimension of the matrix T is the order of the matrix-exponential representation.

The distribution is a generalisation of the phase-type distribution.

Moments

If X has a matrix-exponential distribution then the kth moment is given by

E ( X k ) = ( 1 ) k + 1 k ! α T ( k + 1 ) s . {\displaystyle \operatorname {E} (X^{k})=(-1)^{k+1}k!\mathbf {\alpha } T^{-(k+1)}\mathbf {s} .}

Fitting

Matrix exponential distributions can be fitted using maximum likelihood estimation.

Software

See also

References

  1. ^ Asmussen, S. R.; o’Cinneide, C. A. (2006). "Matrix-Exponential Distributions". Encyclopedia of Statistical Sciences. doi:10.1002/0471667196.ess1092.pub2. ISBN 0471667196.
  2. ^ Bean, N. G.; Fackrell, M.; Taylor, P. (2008). "Characterization of Matrix-Exponential Distributions". Stochastic Models. 24 (3): 339. doi:10.1080/15326340802232186.
  3. "Tools for Phase-Type Distributions (butools.ph) — butools 2.0 documentation". webspn.hit.bme.hu. Retrieved 2022-04-16.
  4. He, Q. M.; Zhang, H. (2007). "On matrix exponential distributions". Advances in Applied Probability. 39. Applied Probability Trust: 271–292. doi:10.1239/aap/1175266478.
  5. Fackrell, M. (2005). "Fitting with Matrix-Exponential Distributions". Stochastic Models. 21 (2–3): 377. doi:10.1081/STM-200056227.
Probability distributions (list)
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Univariate (circular) directional
Circular uniform
Univariate von Mises
Wrapped normal
Wrapped Cauchy
Wrapped exponential
Wrapped asymmetric Laplace
Wrapped Lévy
Bivariate (spherical)
Kent
Bivariate (toroidal)
Bivariate von Mises
Multivariate
von Mises–Fisher
Bingham
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families


Stub icon

This probability-related article is a stub. You can help Misplaced Pages by expanding it.

Categories:
Matrix-exponential distribution Add topic