Misplaced Pages

Minkowski functional

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Minkowski gauge) Function made from a set

In mathematics, in the field of functional analysis, a Minkowski functional (after Hermann Minkowski) or gauge function is a function that recovers a notion of distance on a linear space.

If K {\textstyle K} is a subset of a real or complex vector space X , {\textstyle X,} then the Minkowski functional or gauge of K {\textstyle K} is defined to be the function p K : X [ 0 , ] , {\textstyle p_{K}:X\to ,} valued in the extended real numbers, defined by p K ( x ) := inf { r R : r > 0  and  x r K }  for every  x X , {\displaystyle p_{K}(x):=\inf\{r\in \mathbb {R} :r>0{\text{ and }}x\in rK\}\quad {\text{ for every }}x\in X,} where the infimum of the empty set is defined to be positive infinity {\textstyle \,\infty \,} (which is not a real number so that p K ( x ) {\textstyle p_{K}(x)} would then not be real-valued).

The set K {\textstyle K} is often assumed/picked to have properties, such as being an absorbing disk in X {\textstyle X} , that guarantee that p K {\textstyle p_{K}} will be a real-valued seminorm on X . {\textstyle X.} In fact, every seminorm p {\textstyle p} on X {\textstyle X} is equal to the Minkowski functional (that is, p = p K {\textstyle p=p_{K}} ) of any subset K {\textstyle K} of X {\textstyle X} satisfying

{ x X : p ( x ) < 1 } K { x X : p ( x ) 1 } {\displaystyle \{x\in X:p(x)<1\}\subseteq K\subseteq \{x\in X:p(x)\leq 1\}}

(where all three of these sets are necessarily absorbing in X {\textstyle X} and the first and last are also disks).

Thus every seminorm (which is a function defined by purely algebraic properties) can be associated (non-uniquely) with an absorbing disk (which is a set with certain geometric properties) and conversely, every absorbing disk can be associated with its Minkowski functional (which will necessarily be a seminorm). These relationships between seminorms, Minkowski functionals, and absorbing disks is a major reason why Minkowski functionals are studied and used in functional analysis. In particular, through these relationships, Minkowski functionals allow one to "translate" certain geometric properties of a subset of X {\textstyle X} into certain algebraic properties of a function on X . {\textstyle X.}

The Minkowski function is always non-negative (meaning p K 0 {\textstyle p_{K}\geq 0} ). This property of being nonnegative stands in contrast to other classes of functions, such as sublinear functions and real linear functionals, that do allow negative values. However, p K {\textstyle p_{K}} might not be real-valued since for any given x X , {\textstyle x\in X,} the value p K ( x ) {\textstyle p_{K}(x)} is a real number if and only if { r > 0 : x r K } {\textstyle \{r>0:x\in rK\}} is not empty. Consequently, K {\textstyle K} is usually assumed to have properties (such as being absorbing in X , {\textstyle X,} for instance) that will guarantee that p K {\textstyle p_{K}} is real-valued.

Definition

Let K {\textstyle K} be a subset of a real or complex vector space X . {\textstyle X.} Define the gauge of K {\textstyle K} or the Minkowski functional associated with or induced by K {\textstyle K} as being the function p K : X [ 0 , ] , {\textstyle p_{K}:X\to ,} valued in the extended real numbers, defined by

p K ( x ) := inf { r > 0 : x r K } , {\displaystyle p_{K}(x):=\inf\{r>0:x\in rK\},}

(recall that the infimum of the empty set is {\textstyle \,\infty } , that is, inf = {\textstyle \inf \varnothing =\infty } ). Here, { r > 0 : x r K } {\textstyle \{r>0:x\in rK\}} is shorthand for { r R : r > 0  and  x r K } . {\textstyle \{r\in \mathbb {R} :r>0{\text{ and }}x\in rK\}.}

For any x X , {\textstyle x\in X,} p K ( x ) {\textstyle p_{K}(x)\neq \infty } if and only if { r > 0 : x r K } {\textstyle \{r>0:x\in rK\}} is not empty. The arithmetic operations on R {\textstyle \mathbb {R} } can be extended to operate on ± , {\textstyle \pm \infty ,} where r ± := 0 {\textstyle {\frac {r}{\pm \infty }}:=0} for all non-zero real < r < . {\textstyle -\infty <r<\infty .} The products 0 {\textstyle 0\cdot \infty } and 0 {\textstyle 0\cdot -\infty } remain undefined.

Some conditions making a gauge real-valued

In the field of convex analysis, the map p K {\textstyle p_{K}} taking on the value of {\textstyle \,\infty \,} is not necessarily an issue. However, in functional analysis p K {\textstyle p_{K}} is almost always real-valued (that is, to never take on the value of {\textstyle \,\infty \,} ), which happens if and only if the set { r > 0 : x r K } {\textstyle \{r>0:x\in rK\}} is non-empty for every x X . {\textstyle x\in X.}

In order for p K {\textstyle p_{K}} to be real-valued, it suffices for the origin of X {\textstyle X} to belong to the algebraic interior or core of K {\textstyle K} in X . {\textstyle X.} If K {\textstyle K} is absorbing in X , {\textstyle X,} where recall that this implies that 0 K , {\textstyle 0\in K,} then the origin belongs to the algebraic interior of K {\textstyle K} in X {\textstyle X} and thus p K {\textstyle p_{K}} is real-valued. Characterizations of when p K {\textstyle p_{K}} is real-valued are given below.

Motivating examples

Example 1

Consider a normed vector space ( X , ) , {\textstyle (X,\|\,\cdot \,\|),} with the norm {\textstyle \|\,\cdot \,\|} and let U := { x X : x 1 } {\textstyle U:=\{x\in X:\|x\|\leq 1\}} be the unit ball in X . {\textstyle X.} Then for every x X , {\textstyle x\in X,} x = p U ( x ) . {\textstyle \|x\|=p_{U}(x).} Thus the Minkowski functional p U {\textstyle p_{U}} is just the norm on X . {\textstyle X.}

Example 2

Let X {\textstyle X} be a vector space without topology with underlying scalar field K . {\textstyle \mathbb {K} .} Let f : X K {\textstyle f:X\to \mathbb {K} } be any linear functional on X {\textstyle X} (not necessarily continuous). Fix a > 0. {\textstyle a>0.} Let K {\textstyle K} be the set K := { x X : | f ( x ) | a } {\displaystyle K:=\{x\in X:|f(x)|\leq a\}} and let p K {\textstyle p_{K}} be the Minkowski functional of K . {\textstyle K.} Then p K ( x ) = 1 a | f ( x ) |  for all  x X . {\displaystyle p_{K}(x)={\frac {1}{a}}|f(x)|\quad {\text{ for all }}x\in X.} The function p K {\textstyle p_{K}} has the following properties:

  1. It is subadditive: p K ( x + y ) p K ( x ) + p K ( y ) . {\textstyle p_{K}(x+y)\leq p_{K}(x)+p_{K}(y).}
  2. It is absolutely homogeneous: p K ( s x ) = | s | p K ( x ) {\textstyle p_{K}(sx)=|s|p_{K}(x)} for all scalars s . {\textstyle s.}
  3. It is nonnegative: p K 0. {\textstyle p_{K}\geq 0.}

Therefore, p K {\textstyle p_{K}} is a seminorm on X , {\textstyle X,} with an induced topology. This is characteristic of Minkowski functionals defined via "nice" sets. There is a one-to-one correspondence between seminorms and the Minkowski functional given by such sets. What is meant precisely by "nice" is discussed in the section below.

Notice that, in contrast to a stronger requirement for a norm, p K ( x ) = 0 {\textstyle p_{K}(x)=0} need not imply x = 0. {\textstyle x=0.} In the above example, one can take a nonzero x {\textstyle x} from the kernel of f . {\textstyle f.} Consequently, the resulting topology need not be Hausdorff.

Common conditions guaranteeing gauges are seminorms

To guarantee that p K ( 0 ) = 0 , {\textstyle p_{K}(0)=0,} it will henceforth be assumed that 0 K . {\textstyle 0\in K.}

In order for p K {\textstyle p_{K}} to be a seminorm, it suffices for K {\textstyle K} to be a disk (that is, convex and balanced) and absorbing in X , {\textstyle X,} which are the most common assumption placed on K . {\textstyle K.}

Theorem — If K {\textstyle K} is an absorbing disk in a vector space X {\textstyle X} then the Minkowski functional of K , {\textstyle K,} which is the map p K : X [ 0 , ) {\textstyle p_{K}:X\to [0,\infty )} defined by p K ( x ) := inf { r > 0 : x r K } , {\displaystyle p_{K}(x):=\inf\{r>0:x\in rK\},} is a seminorm on X . {\textstyle X.} Moreover, p K ( x ) = 1 sup { r > 0 : r x K } . {\displaystyle p_{K}(x)={\frac {1}{\sup\{r>0:rx\in K\}}}.}

More generally, if K {\textstyle K} is convex and the origin belongs to the algebraic interior of K , {\textstyle K,} then p K {\textstyle p_{K}} is a nonnegative sublinear functional on X , {\textstyle X,} which implies in particular that it is subadditive and positive homogeneous. If K {\textstyle K} is absorbing in X {\textstyle X} then p [ 0 , 1 ] K {\textstyle p_{K}} is positive homogeneous, meaning that p [ 0 , 1 ] K ( s x ) = s p [ 0 , 1 ] K ( x ) {\textstyle p_{K}(sx)=sp_{K}(x)} for all real s 0 , {\textstyle s\geq 0,} where [ 0 , 1 ] K = { t k : t [ 0 , 1 ] , k K } . {\textstyle K=\{tk:t\in ,k\in K\}.} If q {\textstyle q} is a nonnegative real-valued function on X {\textstyle X} that is positive homogeneous, then the sets U := { x X : q ( x ) < 1 } {\textstyle U:=\{x\in X:q(x)<1\}} and D := { x X : q ( x ) 1 } {\textstyle D:=\{x\in X:q(x)\leq 1\}} satisfy [ 0 , 1 ] U = U {\textstyle U=U} and [ 0 , 1 ] D = D ; {\textstyle D=D;} if in addition q {\textstyle q} is absolutely homogeneous then both U {\textstyle U} and D {\textstyle D} are balanced.

Gauges of absorbing disks

Arguably the most common requirements placed on a set K {\textstyle K} to guarantee that p K {\textstyle p_{K}} is a seminorm are that K {\textstyle K} be an absorbing disk in X . {\textstyle X.} Due to how common these assumptions are, the properties of a Minkowski functional p K {\textstyle p_{K}} when K {\textstyle K} is an absorbing disk will now be investigated. Since all of the results mentioned above made few (if any) assumptions on K , {\textstyle K,} they can be applied in this special case.

Theorem — Assume that K {\textstyle K} is an absorbing subset of X . {\textstyle X.} It is shown that:

  1. If K {\textstyle K} is convex then p K {\textstyle p_{K}} is subadditive.
  2. If K {\textstyle K} is balanced then p K {\textstyle p_{K}} is absolutely homogeneous; that is, p K ( s x ) = | s | p K ( x ) {\textstyle p_{K}(sx)=|s|p_{K}(x)} for all scalars s . {\textstyle s.}
Proof that the Gauge of an absorbing disk is a seminorm

Convexity and subadditivity

A simple geometric argument that shows convexity of K {\textstyle K} implies subadditivity is as follows. Suppose for the moment that p K ( x ) = p K ( y ) = r . {\textstyle p_{K}(x)=p_{K}(y)=r.} Then for all e > 0 , {\textstyle e>0,} x , y K e := ( r , e ) K . {\textstyle x,y\in K_{e}:=(r,e)K.} Since K {\textstyle K} is convex and r + e 0 , {\textstyle r+e\neq 0,} K e {\textstyle K_{e}} is also convex. Therefore, 1 2 x + 1 2 y K e . {\textstyle {\frac {1}{2}}x+{\frac {1}{2}}y\in K_{e}.} By definition of the Minkowski functional p K , {\textstyle p_{K},} p K ( 1 2 x + 1 2 y ) r + e = 1 2 p K ( x ) + 1 2 p K ( y ) + e . {\displaystyle p_{K}\left({\frac {1}{2}}x+{\frac {1}{2}}y\right)\leq r+e={\frac {1}{2}}p_{K}(x)+{\frac {1}{2}}p_{K}(y)+e.}

But the left hand side is 1 2 p K ( x + y ) , {\textstyle {\frac {1}{2}}p_{K}(x+y),} so that p K ( x + y ) p K ( x ) + p K ( y ) + 2 e . {\displaystyle p_{K}(x+y)\leq p_{K}(x)+p_{K}(y)+2e.}

Since e > 0 {\textstyle e>0} was arbitrary, it follows that p K ( x + y ) p K ( x ) + p K ( y ) , {\textstyle p_{K}(x+y)\leq p_{K}(x)+p_{K}(y),} which is the desired inequality. The general case p K ( x ) > p K ( y ) {\textstyle p_{K}(x)>p_{K}(y)} is obtained after the obvious modification.

Convexity of K , {\textstyle K,} together with the initial assumption that the set { r > 0 : x r K } {\textstyle \{r>0:x\in rK\}} is nonempty, implies that K {\textstyle K} is absorbing.

Balancedness and absolute homogeneity

Notice that K {\textstyle K} being balanced implies that λ x r K if and only if x r | λ | K . {\displaystyle \lambda x\in rK\quad {\mbox{if and only if}}\quad x\in {\frac {r}{|\lambda |}}K.}

Therefore p K ( λ x ) = inf { r > 0 : λ x r K } = inf { r > 0 : x r | λ | K } = inf { | λ | r | λ | > 0 : x r | λ | K } = | λ | p K ( x ) . {\displaystyle p_{K}(\lambda x)=\inf \left\{r>0:\lambda x\in rK\right\}=\inf \left\{r>0:x\in {\frac {r}{|\lambda |}}K\right\}=\inf \left\{|\lambda |{\frac {r}{|\lambda |}}>0:x\in {\frac {r}{|\lambda |}}K\right\}=|\lambda |p_{K}(x).}

Algebraic properties

Let X {\textstyle X} be a real or complex vector space and let K {\textstyle K} be an absorbing disk in X . {\textstyle X.}

  • p K {\textstyle p_{K}} is a seminorm on X . {\textstyle X.}
  • p K {\textstyle p_{K}} is a norm on X {\textstyle X} if and only if K {\textstyle K} does not contain a non-trivial vector subspace.
  • p s K = 1 | s | p K {\textstyle p_{sK}={\frac {1}{|s|}}p_{K}} for any scalar s 0. {\textstyle s\neq 0.}
  • If J {\textstyle J} is an absorbing disk in X {\textstyle X} and J K {\textstyle J\subseteq K} then p K p J . {\textstyle p_{K}\leq p_{J}.}
  • If K {\textstyle K} is a set satisfying { x X : p ( x ) < 1 } K { x X : p ( x ) 1 } {\textstyle \{x\in X:p(x)<1\}\;\subseteq \;K\;\subseteq \;\{x\in X:p(x)\leq 1\}} then K {\textstyle K} is absorbing in X {\textstyle X} and p = p K , {\textstyle p=p_{K},} where p K {\textstyle p_{K}} is the Minkowski functional associated with K ; {\textstyle K;} that is, it is the gauge of K . {\textstyle K.}
  • In particular, if K {\textstyle K} is as above and q {\textstyle q} is any seminorm on X , {\textstyle X,} then q = p {\textstyle q=p} if and only if { x X : q ( x ) < 1 } K { x X : q ( x ) 1 } . {\textstyle \{x\in X:q(x)<1\}\;\subseteq \;K\;\subseteq \;\{x\in X:q(x)\leq 1\}.}
  • If x X {\textstyle x\in X} satisfies p K ( x ) < 1 {\textstyle p_{K}(x)<1} then x K . {\textstyle x\in K.}

Topological properties

Assume that X {\textstyle X} is a (real or complex) topological vector space (TVS) (not necessarily Hausdorff or locally convex) and let K {\textstyle K} be an absorbing disk in X . {\textstyle X.} Then

Int X K { x X : p K ( x ) < 1 } K { x X : p K ( x ) 1 } Cl X K , {\displaystyle \operatorname {Int} _{X}K\;\subseteq \;\{x\in X:p_{K}(x)<1\}\;\subseteq \;K\;\subseteq \;\{x\in X:p_{K}(x)\leq 1\}\;\subseteq \;\operatorname {Cl} _{X}K,}

where Int X K {\textstyle \operatorname {Int} _{X}K} is the topological interior and Cl X K {\textstyle \operatorname {Cl} _{X}K} is the topological closure of K {\textstyle K} in X . {\textstyle X.} Importantly, it was not assumed that p K {\textstyle p_{K}} was continuous nor was it assumed that K {\textstyle K} had any topological properties.

Moreover, the Minkowski functional p K {\textstyle p_{K}} is continuous if and only if K {\textstyle K} is a neighborhood of the origin in X . {\textstyle X.} If p K {\textstyle p_{K}} is continuous then Int X K = { x X : p K ( x ) < 1 }  and  Cl X K = { x X : p K ( x ) 1 } . {\displaystyle \operatorname {Int} _{X}K=\{x\in X:p_{K}(x)<1\}\quad {\text{ and }}\quad \operatorname {Cl} _{X}K=\{x\in X:p_{K}(x)\leq 1\}.}

Minimal requirements on the set

This section will investigate the most general case of the gauge of any subset K {\textstyle K} of X . {\textstyle X.} The more common special case where K {\textstyle K} is assumed to be an absorbing disk in X {\textstyle X} was discussed above.

Properties

All results in this section may be applied to the case where K {\textstyle K} is an absorbing disk.

Throughout, K {\textstyle K} is any subset of X . {\textstyle X.}

Summary — Suppose that K {\textstyle K} is a subset of a real or complex vector space X . {\textstyle X.}

  1. Strict positive homogeneity: p K ( r x ) = r p K ( x ) {\textstyle p_{K}(rx)=rp_{K}(x)} for all x X {\textstyle x\in X} and all positive real r > 0. {\textstyle r>0.}
    • Positive/Nonnegative homogeneity: p K {\textstyle p_{K}} is nonnegative homogeneous if and only if p K {\textstyle p_{K}} is real-valued.
      • A map p {\textstyle p} is called nonnegative homogeneous if p ( r x ) = r p ( x ) {\textstyle p(rx)=rp(x)} for all x X {\textstyle x\in X} and all nonnegative real r 0. {\textstyle r\geq 0.} Since 0 {\textstyle 0\cdot \infty } is undefined, a map that takes infinity as a value is not nonnegative homogeneous.
  2. Real-values: ( 0 , ) K {\textstyle (0,\infty )K} is the set of all points on which p K {\textstyle p_{K}} is real valued. So p K {\textstyle p_{K}} is real-valued if and only if ( 0 , ) K = X , {\textstyle (0,\infty )K=X,} in which case 0 K . {\textstyle 0\in K.}
    • Value at 0 {\textstyle 0} : p K ( 0 ) {\textstyle p_{K}(0)\neq \infty } if and only if 0 K {\textstyle 0\in K} if and only if p K ( 0 ) = 0. {\textstyle p_{K}(0)=0.}
    • Null space: If x X {\textstyle x\in X} then p K ( x ) = 0 {\textstyle p_{K}(x)=0} if and only if ( 0 , ) x ( 0 , 1 ) K {\textstyle (0,\infty )x\subseteq (0,1)K} if and only if there exists a divergent sequence of positive real numbers t 1 , t 2 , t 3 , {\textstyle t_{1},t_{2},t_{3},\cdots \to \infty } such that t n x K {\textstyle t_{n}x\in K} for all n . {\textstyle n.} Moreover, the zero set of p K {\textstyle p_{K}} is ker p K   = def   { y X : p K ( y ) = 0 } = e > 0 ( 0 , e ) K . {\textstyle \ker p_{K}~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~\left\{y\in X:p_{K}(y)=0\right\}={\textstyle \bigcap \limits _{e>0}}(0,e)K.}
  3. Comparison to a constant: If 0 r {\textstyle 0\leq r\leq \infty } then for any x X , {\textstyle x\in X,} p K ( x ) < r {\textstyle p_{K}(x)<r} if and only if x ( 0 , r ) K ; {\textstyle x\in (0,r)K;} this can be restated as: If 0 r {\textstyle 0\leq r\leq \infty } then p K 1 ( [ 0 , r ) ) = ( 0 , r ) K . {\textstyle p_{K}^{-1}([0,r))=(0,r)K.}
    • It follows that if 0 R < {\textstyle 0\leq R<\infty } is real then p K 1 ( [ 0 , R ] ) = e > 0 ( 0 , R + e ) K , {\textstyle p_{K}^{-1}()={\textstyle \bigcap \limits _{e>0}}(0,R+e)K,} where the set on the right hand side denotes e > 0 [ ( 0 , R + e ) K ] {\textstyle {\textstyle \bigcap \limits _{e>0}}} and not its subset [ e > 0 ( 0 , R + e ) ] K = ( 0 , R ] K . {\textstyle \leftK=(0,R]K.} If R > 0 {\textstyle R>0} then these sets are equal if and only if K {\textstyle K} contains { y X : p K ( y ) = 1 } . {\textstyle \left\{y\in X:p_{K}(y)=1\right\}.}
    • In particular, if x R K {\textstyle x\in RK} or x ( 0 , R ] K {\textstyle x\in (0,R]K} then p K ( x ) R , {\textstyle p_{K}(x)\leq R,} but importantly, the converse is not necessarily true.
  4. Gauge comparison: For any subset L X , {\textstyle L\subseteq X,} p K p L {\textstyle p_{K}\leq p_{L}} if and only if ( 0 , 1 ) L ( 0 , 1 ) K ; {\textstyle (0,1)L\subseteq (0,1)K;} thus p L = p K {\textstyle p_{L}=p_{K}} if and only if ( 0 , 1 ) L = ( 0 , 1 ) K . {\textstyle (0,1)L=(0,1)K.}
    • The assignment L p L {\textstyle L\mapsto p_{L}} is order-reversing in the sense that if K L {\textstyle K\subseteq L} then p L p K . {\textstyle p_{L}\leq p_{K}.}
    • Because the set L := ( 0 , 1 ) K {\textstyle L:=(0,1)K} satisfies ( 0 , 1 ) L = ( 0 , 1 ) K , {\textstyle (0,1)L=(0,1)K,} it follows that replacing K {\textstyle K} with p K 1 ( [ 0 , 1 ) ) = ( 0 , 1 ) K {\textstyle p_{K}^{-1}([0,1))=(0,1)K} L := ( 0 , 1 ] K {\textstyle L:=(0,1]K} and of L := p K 1 ( [ 0 , 1 ] ) . {\textstyle L:=p_{K}^{-1}().}
    • If D   = def   { y X : p K ( y ) = 1  or  p K ( y ) = 0 } {\textstyle D~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~\left\{y\in X:p_{K}(y)=1{\text{ or }}p_{K}(y)=0\right\}} then p D = p K {\textstyle p_{D}=p_{K}} and D {\textstyle D} has the particularly nice property that if r > 0 {\textstyle r>0} is real then x r D {\textstyle x\in rD} if and only if p D ( x ) = r {\textstyle p_{D}(x)=r} or p D ( x ) = 0. {\textstyle p_{D}(x)=0.} Moreover, if r > 0 {\textstyle r>0} is real then p D ( x ) r {\textstyle p_{D}(x)\leq r} if and only if x ( 0 , r ] D . {\textstyle x\in (0,r]D.}
  5. Subadditive/Triangle inequality: p K {\textstyle p_{K}} is subadditive if and only if ( 0 , 1 ) K {\textstyle (0,1)K} is convex. If K {\textstyle K} is convex then so are both ( 0 , 1 ) K {\textstyle (0,1)K} and ( 0 , 1 ] K {\textstyle (0,1]K} and moreover, p K {\textstyle p_{K}} is subadditive.
  6. Scaling the set: If s 0 {\textstyle s\neq 0} is a scalar then p s K ( y ) = p K ( 1 s y ) {\textstyle p_{sK}(y)=p_{K}\left({\tfrac {1}{s}}y\right)} for all y X . {\textstyle y\in X.} Thus if 0 < r < {\textstyle 0<r<\infty } is real then p r K ( y ) = p K ( 1 r y ) = 1 r p K ( y ) . {\textstyle p_{rK}(y)=p_{K}\left({\tfrac {1}{r}}y\right)={\tfrac {1}{r}}p_{K}(y).}
  7. Symmetric: p K {\textstyle p_{K}} is symmetric (meaning that p K ( y ) = p K ( y ) {\textstyle p_{K}(-y)=p_{K}(y)} for all y X {\textstyle y\in X} ) if and only if ( 0 , 1 ) K {\textstyle (0,1)K} is a symmetric set (meaning that ( 0 , 1 ) K = ( 0 , 1 ) K {\textstyle (0,1)K=-(0,1)K} ), which happens if and only if p K = p K . {\textstyle p_{K}=p_{-K}.}
  8. Absolute homogeneity: p K ( u x ) = p K ( x ) {\textstyle p_{K}(ux)=p_{K}(x)} for all x X {\textstyle x\in X} and all unit length scalars u {\textstyle u} if and only if ( 0 , 1 ) u K ( 0 , 1 ) K {\textstyle (0,1)uK\subseteq (0,1)K} for all unit length scalars u , {\textstyle u,} in which case p K ( s x ) = | s | p K ( x ) {\textstyle p_{K}(sx)=|s|p_{K}(x)} for all x X {\textstyle x\in X} and all non-zero scalars s 0. {\textstyle s\neq 0.} If in addition p K {\textstyle p_{K}} is also real-valued then this holds for all scalars s {\textstyle s} (that is, p K {\textstyle p_{K}} is absolutely homogeneous).
    • ( 0 , 1 ) u K ( 0 , 1 ) K {\textstyle (0,1)uK\subseteq (0,1)K} for all unit length u {\textstyle u} if and only if ( 0 , 1 ) u K = ( 0 , 1 ) K {\textstyle (0,1)uK=(0,1)K} for all unit length u . {\textstyle u.}
    • s K K {\textstyle sK\subseteq K} for all unit scalars s {\textstyle s} if and only if s K = K {\textstyle sK=K} for all unit scalars s ; {\textstyle s;} if this is the case then ( 0 , 1 ) K = ( 0 , 1 ) s K {\textstyle (0,1)K=(0,1)sK} for all unit scalars s . {\textstyle s.}
    • The Minkowski functional of any balanced set is a balanced function.
  9. Absorbing: If K {\textstyle K} is convex or balanced and if ( 0 , ) K = X {\textstyle (0,\infty )K=X} then K {\textstyle K} is absorbing in X . {\textstyle X.}
    • If a set A {\textstyle A} is absorbing in X {\textstyle X} and A K {\textstyle A\subseteq K} then K {\textstyle K} is absorbing in X . {\textstyle X.}
    • If K {\textstyle K} is convex and 0 K {\textstyle 0\in K} then [ 0 , 1 ] K = K , {\textstyle K=K,} in which case ( 0 , 1 ) K K . {\textstyle (0,1)K\subseteq K.}
  10. Restriction to a vector subspace: If S {\textstyle S} is a vector subspace of X {\textstyle X} and if p K S : S [ 0 , ] {\textstyle p_{K\cap S}:S\to } denotes the Minkowski functional of K S {\textstyle K\cap S} on S , {\textstyle S,} then p K | S = p K S , {\textstyle p_{K}{\big \vert }_{S}=p_{K\cap S},} where p K | S {\textstyle p_{K}{\big \vert }_{S}} denotes the restriction of p K {\textstyle p_{K}} to S . {\textstyle S.}
Proof

The proofs of these basic properties are straightforward exercises so only the proofs of the most important statements are given.

The proof that a convex subset A X {\textstyle A\subseteq X} that satisfies ( 0 , ) A = X {\textstyle (0,\infty )A=X} is necessarily absorbing in X {\textstyle X} is straightforward and can be found in the article on absorbing sets.

For any real t > 0 , {\textstyle t>0,}

{ r > 0 : t x r K } = { t ( r / t ) : x ( r / t ) K } = t { s > 0 : x s K } {\displaystyle \{r>0:tx\in rK\}=\{t(r/t):x\in (r/t)K\}=t\{s>0:x\in sK\}}

so that taking the infimum of both sides shows that

p K ( t x ) = inf { r > 0 : t x r K } = t inf { s > 0 : x s K } = t p K ( x ) . {\displaystyle p_{K}(tx)=\inf\{r>0:tx\in rK\}=t\inf\{s>0:x\in sK\}=tp_{K}(x).}

This proves that Minkowski functionals are strictly positive homogeneous. For 0 p K ( x ) {\textstyle 0\cdot p_{K}(x)} to be well-defined, it is necessary and sufficient that p K ( x ) ; {\textstyle p_{K}(x)\neq \infty ;} thus p K ( t x ) = t p K ( x ) {\textstyle p_{K}(tx)=tp_{K}(x)} for all x X {\textstyle x\in X} and all non-negative real t 0 {\textstyle t\geq 0} if and only if p K {\textstyle p_{K}} is real-valued.

The hypothesis of statement (7) allows us to conclude that p K ( s x ) = p K ( x ) {\textstyle p_{K}(sx)=p_{K}(x)} for all x X {\textstyle x\in X} and all scalars s {\textstyle s} satisfying | s | = 1. {\textstyle |s|=1.} Every scalar s {\textstyle s} is of the form r e i t {\textstyle re^{it}} for some real t {\textstyle t} where r := | s | 0 {\textstyle r:=|s|\geq 0} and e i t {\textstyle e^{it}} is real if and only if s {\textstyle s} is real. The results in the statement about absolute homogeneity follow immediately from the aforementioned conclusion, from the strict positive homogeneity of p K , {\textstyle p_{K},} and from the positive homogeneity of p K {\textstyle p_{K}} when p K {\textstyle p_{K}} is real-valued. {\textstyle \blacksquare }

Examples

  1. If L {\textstyle {\mathcal {L}}} is a non-empty collection of subsets of X {\textstyle X} then p L ( x ) = inf { p L ( x ) : L L } {\textstyle p_{\cup {\mathcal {L}}}(x)=\inf \left\{p_{L}(x):L\in {\mathcal {L}}\right\}} for all x X , {\textstyle x\in X,} where L   = def   L L L . {\textstyle \cup {\mathcal {L}}~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~{\textstyle \bigcup \limits _{L\in {\mathcal {L}}}}L.}
    • Thus p K L ( x ) = min { p K ( x ) , p L ( x ) } {\textstyle p_{K\cup L}(x)=\min \left\{p_{K}(x),p_{L}(x)\right\}} for all x X . {\textstyle x\in X.}
  2. If L {\textstyle {\mathcal {L}}} is a non-empty collection of subsets of X {\textstyle X} and I X {\textstyle I\subseteq X} satisfies

{ x X : p L ( x ) < 1  for all  L L } I { x X : p L ( x ) 1  for all  L L } {\displaystyle \left\{x\in X:p_{L}(x)<1{\text{ for all }}L\in {\mathcal {L}}\right\}\quad \subseteq \quad I\quad \subseteq \quad \left\{x\in X:p_{L}(x)\leq 1{\text{ for all }}L\in {\mathcal {L}}\right\}} then p I ( x ) = sup { p L ( x ) : L L } {\textstyle p_{I}(x)=\sup \left\{p_{L}(x):L\in {\mathcal {L}}\right\}} for all x X . {\textstyle x\in X.}

The following examples show that the containment ( 0 , R ] K e > 0 ( 0 , R + e ) K {\textstyle (0,R]K\;\subseteq \;{\textstyle \bigcap \limits _{e>0}}(0,R+e)K} could be proper.

Example: If R = 0 {\textstyle R=0} and K = X {\textstyle K=X} then ( 0 , R ] K = ( 0 , 0 ] X = X = {\textstyle (0,R]K=(0,0]X=\varnothing X=\varnothing } but e > 0 ( 0 , e ) K = e > 0 X = X , {\textstyle {\textstyle \bigcap \limits _{e>0}}(0,e)K={\textstyle \bigcap \limits _{e>0}}X=X,} which shows that its possible for ( 0 , R ] K {\textstyle (0,R]K} to be a proper subset of e > 0 ( 0 , R + e ) K {\textstyle {\textstyle \bigcap \limits _{e>0}}(0,R+e)K} when R = 0. {\textstyle R=0.} {\textstyle \blacksquare }

The next example shows that the containment can be proper when R = 1 ; {\textstyle R=1;} the example may be generalized to any real R > 0. {\textstyle R>0.} Assuming that [ 0 , 1 ] K K , {\textstyle K\subseteq K,} the following example is representative of how it happens that x X {\textstyle x\in X} satisfies p K ( x ) = 1 {\textstyle p_{K}(x)=1} but x ( 0 , 1 ] K . {\textstyle x\not \in (0,1]K.}

Example: Let x X {\textstyle x\in X} be non-zero and let K = [ 0 , 1 ) x {\textstyle K=[0,1)x} [ 0 , 1 ] K = K {\textstyle K=K} and x K . {\textstyle x\not \in K.} From x ( 0 , 1 ) K = K {\textstyle x\not \in (0,1)K=K} it follows that p K ( x ) 1. {\textstyle p_{K}(x)\geq 1.} That p K ( x ) 1 {\textstyle p_{K}(x)\leq 1} follows from observing that for every e > 0 , {\textstyle e>0,} ( 0 , 1 + e ) K = [ 0 , 1 + e ) ( [ 0 , 1 ) x ) = [ 0 , 1 + e ) x , {\textstyle (0,1+e)K=[0,1+e)([0,1)x)=[0,1+e)x,} which contains x . {\textstyle x.} Thus p K ( x ) = 1 {\textstyle p_{K}(x)=1} and x e > 0 ( 0 , 1 + e ) K . {\textstyle x\in {\textstyle \bigcap \limits _{e>0}}(0,1+e)K.} However, ( 0 , 1 ] K = ( 0 , 1 ] ( [ 0 , 1 ) x ) = [ 0 , 1 ) x = K {\textstyle (0,1]K=(0,1]([0,1)x)=[0,1)x=K} x ( 0 , 1 ] K , {\textstyle x\not \in (0,1]K,} as desired. {\textstyle \blacksquare }

Positive homogeneity characterizes Minkowski functionals

The next theorem shows that Minkowski functionals are exactly those functions f : X [ 0 , ] {\textstyle f:X\to } that have a certain purely algebraic property that is commonly encountered.

Theorem — Let f : X [ 0 , ] {\textstyle f:X\to } be any function. The following statements are equivalent:

  1. Strict positive homogeneity: f ( t x ) = t f ( x ) {\textstyle \;f(tx)=tf(x)} for all x X {\textstyle x\in X} and all positive real t > 0. {\textstyle t>0.}
    • This statement is equivalent to: f ( t x ) t f ( x ) {\textstyle f(tx)\leq tf(x)} for all x X {\textstyle x\in X} and all positive real t > 0. {\textstyle t>0.}
  2. f {\textstyle f} is a Minkowski functional: meaning that there exists a subset S X {\textstyle S\subseteq X} such that f = p S . {\textstyle f=p_{S}.}
  3. f = p K {\textstyle f=p_{K}} where K := { x X : f ( x ) 1 } . {\textstyle K:=\{x\in X:f(x)\leq 1\}.}
  4. f = p V {\textstyle f=p_{V}\,} where V := { x X : f ( x ) < 1 } . {\textstyle V\,:=\{x\in X:f(x)<1\}.}

Moreover, if f {\textstyle f} never takes on the value {\textstyle \,\infty \,} (so that the product 0 f ( x ) {\textstyle 0\cdot f(x)} is always well-defined) then this list may be extended to include:

  1. Positive/Nonnegative homogeneity: f ( t x ) = t f ( x ) {\textstyle f(tx)=tf(x)} for all x X {\textstyle x\in X} and all nonnegative real t 0 {\textstyle t\geq 0} .
Proof

If f ( t x ) t f ( x ) {\textstyle f(tx)\leq tf(x)} holds for all x X {\textstyle x\in X} and real t > 0 {\textstyle t>0} then t f ( x ) = t f ( 1 t ( t x ) ) t 1 t f ( t x ) = f ( t x ) t f ( x ) {\textstyle tf(x)=tf\left({\tfrac {1}{t}}(tx)\right)\leq t{\tfrac {1}{t}}f(tx)=f(tx)\leq tf(x)} so that t f ( x ) = f ( t x ) . {\textstyle tf(x)=f(tx).}

Only (1) implies (3) will be proven because afterwards, the rest of the theorem follows immediately from the basic properties of Minkowski functionals described earlier; properties that will henceforth be used without comment. So assume that f : X [ 0 , ] {\textstyle f:X\to } is a function such that f ( t x ) = t f ( x ) {\textstyle f(tx)=tf(x)} for all x X {\textstyle x\in X} and all real t > 0 {\textstyle t>0} and let K := { y X : f ( y ) 1 } . {\textstyle K:=\{y\in X:f(y)\leq 1\}.}

For all real t > 0 , {\textstyle t>0,} f ( 0 ) = f ( t 0 ) = t f ( 0 ) {\textstyle f(0)=f(t0)=tf(0)} so by taking t = 2 {\textstyle t=2} for instance, it follows that either f ( 0 ) = 0 {\textstyle f(0)=0} or f ( 0 ) = . {\textstyle f(0)=\infty .} Let x X . {\textstyle x\in X.} It remains to show that f ( x ) = p K ( x ) . {\textstyle f(x)=p_{K}(x).}

It will now be shown that if f ( x ) = 0 {\textstyle f(x)=0} or f ( x ) = {\textstyle f(x)=\infty } then f ( x ) = p K ( x ) , {\textstyle f(x)=p_{K}(x),} so that in particular, it will follow that f ( 0 ) = p K ( 0 ) . {\textstyle f(0)=p_{K}(0).} So suppose that f ( x ) = 0 {\textstyle f(x)=0} or f ( x ) = ; {\textstyle f(x)=\infty ;} in either case f ( t x ) = t f ( x ) = f ( x ) {\textstyle f(tx)=tf(x)=f(x)} for all real t > 0. {\textstyle t>0.} Now if f ( x ) = 0 {\textstyle f(x)=0} then this implies that that t x K {\textstyle tx\in K} for all real t > 0 {\textstyle t>0} (since f ( t x ) = 0 1 {\textstyle f(tx)=0\leq 1} ), which implies that p K ( x ) = 0 , {\textstyle p_{K}(x)=0,} as desired. Similarly, if f ( x ) = {\textstyle f(x)=\infty } then t x K {\textstyle tx\not \in K} for all real t > 0 , {\textstyle t>0,} which implies that p K ( x ) = , {\textstyle p_{K}(x)=\infty ,} as desired. Thus, it will henceforth be assumed that R := f ( x ) {\textstyle R:=f(x)} a positive real number and that x 0 {\textstyle x\neq 0} (importantly, however, the possibility that p K ( x ) {\textstyle p_{K}(x)} is 0 {\textstyle 0} or {\textstyle \,\infty \,} has not yet been ruled out).

Recall that just like f , {\textstyle f,} the function p K {\textstyle p_{K}} satisfies p K ( t x ) = t p K ( x ) {\textstyle p_{K}(tx)=tp_{K}(x)} for all real t > 0. {\textstyle t>0.} Since 0 < 1 R < , {\textstyle 0<{\tfrac {1}{R}}<\infty ,} p K ( x ) = R = f ( x ) {\textstyle p_{K}(x)=R=f(x)} if and only if p K ( 1 R x ) = 1 = f ( 1 R x ) {\textstyle p_{K}\left({\tfrac {1}{R}}x\right)=1=f\left({\tfrac {1}{R}}x\right)} so assume without loss of generality that R = 1 {\textstyle R=1} and it remains to show that p K ( 1 R x ) = 1. {\textstyle p_{K}\left({\tfrac {1}{R}}x\right)=1.} Since f ( x ) = 1 , {\textstyle f(x)=1,} x K ( 0 , 1 ] K , {\textstyle x\in K\subseteq (0,1]K,} which implies that p K ( x ) 1 {\textstyle p_{K}(x)\leq 1} (so in particular, p K ( x ) {\textstyle p_{K}(x)\neq \infty } is guaranteed). It remains to show that p K ( x ) 1 , {\textstyle p_{K}(x)\geq 1,} which recall happens if and only if x ( 0 , 1 ) K . {\textstyle x\not \in (0,1)K.} So assume for the sake of contradiction that x ( 0 , 1 ) K {\textstyle x\in (0,1)K} and let 0 < r < 1 {\textstyle 0<r<1} and k K {\textstyle k\in K} be such that x = r k , {\textstyle x=rk,} where note that k K {\textstyle k\in K} implies that f ( k ) 1. {\textstyle f(k)\leq 1.} Then 1 = f ( x ) = f ( r k ) = r f ( k ) r < 1. {\textstyle 1=f(x)=f(rk)=rf(k)\leq r<1.} {\textstyle \blacksquare }

This theorem can be extended to characterize certain classes of [ , ] {\textstyle } -valued maps (for example, real-valued sublinear functions) in terms of Minkowski functionals. For instance, it can be used to describe how every real homogeneous function f : X R {\textstyle f:X\to \mathbb {R} } (such as linear functionals) can be written in terms of a unique Minkowski functional having a certain property.

Characterizing Minkowski functionals on star sets

Proposition — Let f : X [ 0 , ] {\textstyle f:X\to } be any function and K X {\textstyle K\subseteq X} be any subset. The following statements are equivalent:

  1. f {\textstyle f} is (strictly) positive homogeneous, f ( 0 ) = 0 , {\textstyle f(0)=0,} and

    { x X : f ( x ) < 1 } K { x X : f ( x ) 1 } . {\displaystyle \{x\in X:f(x)<1\}\;\subseteq \;K\;\subseteq \;\{x\in X:f(x)\leq 1\}.}

  2. f {\textstyle f} is the Minkowski functional of K {\textstyle K} (that is, f = p K {\textstyle f=p_{K}} ), K {\textstyle K} contains the origin, and K {\textstyle K} is star-shaped at the origin.
    • The set K {\textstyle K} is star-shaped at the origin if and only if t k K {\textstyle tk\in K} whenever k K {\textstyle k\in K} and 0 t 1. {\textstyle 0\leq t\leq 1.} A set that is star-shaped at the origin is sometimes called a star set.

Characterizing Minkowski functionals that are seminorms

In this next theorem, which follows immediately from the statements above, K {\textstyle K} is not assumed to be absorbing in X {\textstyle X} and instead, it is deduced that ( 0 , 1 ) K {\textstyle (0,1)K} is absorbing when p K {\textstyle p_{K}} is a seminorm. It is also not assumed that K {\textstyle K} is balanced (which is a property that K {\textstyle K} is often required to have); in its place is the weaker condition that ( 0 , 1 ) s K ( 0 , 1 ) K {\textstyle (0,1)sK\subseteq (0,1)K} for all scalars s {\textstyle s} satisfying | s | = 1. {\textstyle |s|=1.} The common requirement that K {\textstyle K} be convex is also weakened to only requiring that ( 0 , 1 ) K {\textstyle (0,1)K} be convex.

Theorem — Let K {\textstyle K} be a subset of a real or complex vector space X . {\textstyle X.} Then p K {\textstyle p_{K}} is a seminorm on X {\textstyle X} if and only if all of the following conditions hold:

  1. ( 0 , ) K = X {\textstyle (0,\infty )K=X} (or equivalently, p K {\textstyle p_{K}} is real-valued).
  2. ( 0 , 1 ) K {\textstyle (0,1)K} is convex (or equivalently, p K {\textstyle p_{K}} is subadditive).
    • It suffices (but is not necessary) for K {\textstyle K} to be convex.
  3. ( 0 , 1 ) u K ( 0 , 1 ) K {\textstyle (0,1)uK\subseteq (0,1)K} for all unit scalars u . {\textstyle u.}
    • This condition is satisfied if K {\textstyle K} is balanced or more generally if u K K {\textstyle uK\subseteq K} for all unit scalars u . {\textstyle u.}

in which case 0 K {\textstyle 0\in K} and both ( 0 , 1 ) K = { x X : p ( x ) < 1 } {\textstyle (0,1)K=\{x\in X:p(x)<1\}} and e > 0 ( 0 , 1 + e ) K = { x X : p K ( x ) 1 } {\textstyle \bigcap _{e>0}(0,1+e)K=\left\{x\in X:p_{K}(x)\leq 1\right\}} will be convex, balanced, and absorbing subsets of X . {\textstyle X.}

Conversely, if f {\textstyle f} is a seminorm on X {\textstyle X} then the set V := { x X : f ( x ) < 1 } {\textstyle V:=\{x\in X:f(x)<1\}} satisfies all three of the above conditions (and thus also the conclusions) and also f = p V ; {\textstyle f=p_{V};} moreover, V {\textstyle V} is necessarily convex, balanced, absorbing, and satisfies ( 0 , 1 ) V = V = [ 0 , 1 ] V . {\textstyle (0,1)V=V=V.}

Corollary — If K {\textstyle K} is a convex, balanced, and absorbing subset of a real or complex vector space X , {\textstyle X,} then p K {\textstyle p_{K}} is a seminorm on X . {\textstyle X.}

Positive sublinear functions and Minkowski functionals

It may be shown that a real-valued subadditive function f : X R {\textstyle f:X\to \mathbb {R} } on an arbitrary topological vector space X {\textstyle X} is continuous at the origin if and only if it is uniformly continuous, where if in addition f {\textstyle f} is nonnegative, then f {\textstyle f} is continuous if and only if V := { x X : f ( x ) < 1 } {\textstyle V:=\{x\in X:f(x)<1\}} is an open neighborhood in X . {\textstyle X.} If f : X R {\textstyle f:X\to \mathbb {R} } is subadditive and satisfies f ( 0 ) = 0 , {\textstyle f(0)=0,} then f {\textstyle f} is continuous if and only if its absolute value | f | : X [ 0 , ) {\textstyle |f|:X\to [0,\infty )} is continuous.

A nonnegative sublinear function is a nonnegative homogeneous function f : X [ 0 , ) {\textstyle f:X\to [0,\infty )} that satisfies the triangle inequality. It follows immediately from the results below that for such a function f , {\textstyle f,} if V := { x X : f ( x ) < 1 } {\textstyle V:=\{x\in X:f(x)<1\}} then f = p V . {\textstyle f=p_{V}.} Given K X , {\textstyle K\subseteq X,} the Minkowski functional p K {\textstyle p_{K}} is a sublinear function if and only if it is real-valued and subadditive, which is happens if and only if ( 0 , ) K = X {\textstyle (0,\infty )K=X} and ( 0 , 1 ) K {\textstyle (0,1)K} is convex.

Correspondence between open convex sets and positive continuous sublinear functions

Theorem — Suppose that X {\textstyle X} is a topological vector space (not necessarily locally convex or Hausdorff) over the real or complex numbers. Then the non-empty open convex subsets of X {\textstyle X} are exactly those sets that are of the form z + { x X : p ( x ) < 1 } = { x X : p ( x z ) < 1 } {\textstyle z+\{x\in X:p(x)<1\}=\{x\in X:p(x-z)<1\}} for some z X {\textstyle z\in X} and some positive continuous sublinear function p {\textstyle p} on X . {\textstyle X.}

Proof

Let V {\textstyle V\neq \varnothing } be an open convex subset of X . {\textstyle X.} If 0 V {\textstyle 0\in V} then let z := 0 {\textstyle z:=0} and otherwise let z V {\textstyle z\in V} be arbitrary. Let p = p K : X [ 0 , ) {\textstyle p=p_{K}:X\to [0,\infty )} be the Minkowski functional of K := V z {\textstyle K:=V-z} where this convex open neighborhood of the origin satisfies ( 0 , 1 ) K = K . {\textstyle (0,1)K=K.} Then p {\textstyle p} is a continuous sublinear function on X {\textstyle X} since V z {\textstyle V-z} is convex, absorbing, and open (however, p {\textstyle p} is not necessarily a seminorm since it is not necessarily absolutely homogeneous). From the properties of Minkowski functionals, we have p K 1 ( [ 0 , 1 ) ) = ( 0 , 1 ) K , {\textstyle p_{K}^{-1}([0,1))=(0,1)K,} from which it follows that V z = { x X : p ( x ) < 1 } {\textstyle V-z=\{x\in X:p(x)<1\}} and so V = z + { x X : p ( x ) < 1 } . {\textstyle V=z+\{x\in X:p(x)<1\}.} Since z + { x X : p ( x ) < 1 } = { x X : p ( x z ) < 1 } , {\textstyle z+\{x\in X:p(x)<1\}=\{x\in X:p(x-z)<1\},} this completes the proof. {\textstyle \blacksquare }

See also

Notes

  1. It is in general false that x r D {\textstyle x\in rD} if and only if p D ( x ) = r {\textstyle p_{D}(x)=r} (for example, consider when p K {\textstyle p_{K}} is a norm or a seminorm). The correct statement is: If 0 < r < {\textstyle 0<r<\infty } then x r D {\textstyle x\in rD} if and only if p D ( x ) = r {\textstyle p_{D}(x)=r} or p D ( x ) = 0. {\textstyle p_{D}(x)=0.}
  2. u {\textstyle u} is having unit length means that | u | = 1. {\textstyle |u|=1.}
  3. The map p K {\textstyle p_{K}} is called absolutely homogeneous if | s | p K ( x ) {\textstyle |s|p_{K}(x)} is well-defined and p K ( s x ) = | s | p K ( x ) {\textstyle p_{K}(sx)=|s|p_{K}(x)} for all x X {\textstyle x\in X} and all scalars s {\textstyle s} (not just non-zero scalars).

References

  1. Narici & Beckenstein 2011, p. 109.
  2. Narici & Beckenstein 2011, p. 119.
  3. ^ Jarchow 1981, pp. 104–108.
  4. ^ Narici & Beckenstein 2011, pp. 115–154.
  5. ^ Schaefer 1999, p. 40.
  6. ^ Narici & Beckenstein 2011, p. 119-120.
  7. Kubrusly 2011, p. 200.
  8. ^ Schechter 1996, p. 316.
  9. Schechter 1996, p. 303.
  10. Schechter 1996, pp. 313–317.
  11. ^ Narici & Beckenstein 2011, pp. 192–193.

Further reading

  • F. Simeski, A. M. P. Boelens, and M. Ihme. "Modeling Adsorption in Silica Pores via Minkowski Functionals and Molecular Electrostatic Moments". Energies 13 (22) 5976 (2020). doi:10.3390/en13225976.
Functional analysis (topicsglossary)
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
Topological vector spaces (TVSs)
Basic concepts
Main results
Maps
Types of sets
Set operations
Types of TVSs
Convex analysis and variational analysis
Basic concepts
Topics (list)
Maps
Main results (list)
Sets
Series
Duality
Applications and related
Categories:
Minkowski functional Add topic