Misplaced Pages

New Math

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from New Mathematics) Approach to teaching mathematics in the 1960s For other uses, see New Math (disambiguation).
Paperback introductions to the New Math
This article is part of a series on
Education in the
United States
Summary
Curriculum topics
Education policy issues
Levels of education
icon Education portal
flag United States portal

New Mathematics or New Math was a dramatic but temporary change in the way mathematics was taught in American grade schools, and to a lesser extent in European countries and elsewhere, during the 1950s–1970s.

Overview

This section needs additional citations for verification. Please help improve this article by adding citations to reliable sources in this section. Unsourced material may be challenged and removed.
Find sources: "New Math" – news · newspapers · books · scholar · JSTOR (February 2021) (Learn how and when to remove this message)

In 1957, the U.S. National Science Foundation funded the development of several new curricula in the sciences, such as the Physical Science Study Committee high school physics curriculum, Biological Sciences Curriculum Study in biology, and CHEM Study in chemistry. Several mathematics curriculum development efforts were also funded as part of the same initiative, such as the Madison Project, School Mathematics Study Group, and University of Illinois Committee on School Mathematics.

These curricula were quite diverse, yet shared the idea that children's learning of arithmetic algorithms would last past the exam only if memorization and practice were paired with teaching for comprehension. More specifically, elementary school arithmetic beyond single digits makes sense only on the basis of understanding place value. This goal was the reason for teaching arithmetic in bases other than ten in the New Math, despite critics' derision: In that unfamiliar context, students couldn't just mindlessly follow an algorithm, but had to think why the place value of the "hundreds" digit in base seven is 49. Keeping track of non-decimal notation also explains the need to distinguish numbers (values) from the numerals that represent them.

Topics introduced in the New Math include set theory, modular arithmetic, algebraic inequalities, bases other than 10, matrices, symbolic logic, Boolean algebra, and abstract algebra.

All of the New Math projects emphasized some form of discovery learning. Students worked in groups to invent theories about problems posed in the textbooks. Materials for teachers described the classroom as "noisy." Part of the job of the teacher was to move from table to table assessing the theory that each group of students had developed and "torpedo" wrong theories by providing counterexamples. For that style of teaching to be tolerable for students, they had to experience the teacher as a colleague rather than as an adversary or as someone concerned mainly with grading. New Math workshops for teachers, therefore, spent as much effort on the pedagogy as on the mathematics.

Criticism

Parents and teachers who opposed the New Math in the U.S. complained that the new curriculum was too far outside of students' ordinary experience and was not worth taking time away from more traditional topics, such as arithmetic. The material also put new demands on teachers, many of whom were required to teach material they did not fully understand. Parents were concerned that they did not understand what their children were learning and could not help them with their studies. In an effort to learn the material, many parents attended their children's classes. In the end, it was concluded that the experiment was not working, and New Math fell out of favor before the end of the 1960s, though it continued to be taught for years thereafter in some school districts.

In the Algebra preface of his book, Precalculus Mathematics in a Nutshell, Professor George F. Simmons wrote that the New Math produced students who had "heard of the commutative law, but did not know the multiplication table".

In 1965, physicist Richard Feynman wrote in the essay, New Textbooks for the "New" Mathematics:

If we would like to, we can and do say, "The answer is a whole number less than 9 and bigger than 6," but we do not have to say, "The answer is a member of the set which is the intersection of the set of those numbers which are larger than 6 and the set of numbers which are smaller than 9" ... In the "new" mathematics, then, first there must be freedom of thought; second, we do not want to teach just words; and third, subjects should not be introduced without explaining the purpose or reason, or without giving any way in which the material could be really used to discover something interesting. I don't think it is worthwhile teaching such material.

In his book Why Johnny Can't Add: The Failure of the New Math (1973), Morris Kline says that certain advocates of the new topics "ignored completely the fact that mathematics is a cumulative development and that it is practically impossible to learn the newer creations, if one does not know the older ones". Furthermore, noting the trend to abstraction in New Math, Kline says "abstraction is not the first stage, but the last stage, in a mathematical development".

As a result of this controversy, and despite the ongoing influence of the New Math, the phrase "new math" was often used to describe any short-lived fad that quickly becomes discredited until around the turn of the millennium. In 1999, Time placed it on a list of the 100 worst ideas of the 20th century.

In other countries

In the broader context, reform of school mathematics curricula was also pursued in European countries, such as the United Kingdom (particularly by the School Mathematics Project), and France due to concerns that mathematics as taught in schools was becoming too disconnected from mathematics research, in particular that of the Bourbaki group. In West Germany the changes were seen as part of a larger process of Bildungsreform. Beyond the use of set theory and different approach to arithmetic, characteristic changes were transformation geometry in place of the traditional deductive Euclidean geometry, and an approach to calculus that was based on greater insight, rather than emphasis on facility.

Again, the changes were met with a mixed reception, but for different reasons. For example, the end-users of mathematics studies were at that time mostly in the physical sciences and engineering, and they expected manipulative skill in calculus rather than more abstract ideas. Some compromises have since been required, given that discrete mathematics is the basic language of computing.

Teaching in the USSR did not experience such extreme upheavals, while being kept in tune, both with the applications and academic trends:

Under A. N. Kolmogorov, the mathematics committee declared a reform of the curricula of grades 4–10, at the time when the school system consisted of 10 grades. The committee found the type of reform in progress in Western countries to be unacceptable; for example, no special topic for sets was accepted for inclusion in school textbooks. Transformation approaches were accepted in teaching geometry, but not to such sophisticated level [sic] presented in the textbook produced by Vladimir Boltyansky and Isaak Yaglom.

In Japan, New Math was supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), but not without encountering problems, leading to student-centred approaches.

In popular culture

  • Musician and university mathematics lecturer Tom Lehrer wrote a satirical song named "New Math" (from his 1965 album That Was the Year That Was), which revolved around the process of subtracting 173 from 342 in decimal and octal. The song is in the style of a lecture about the general concept of subtraction with positional notation in an arbitrary base, illustrated by two simple calculations, and highlights the New Math's emphasis on insight and abstract concepts – as Lehrer sardonically put it, "In the new approach ... the important thing is to understand what you're doing, rather than to get the right answer." At one point in the song, he notes that "you've got thirteen and you take away seven, and that leaves five... well, six, actually, but the idea is the important thing." The chorus pokes fun at parents' frustration and confusion over the entire method: "Hooray for New Math, New Math / It won't do you a bit of good to review math / It's so simple, so very simple / That only a child can do it."
  • In 1965, cartoonist Charles Schulz authored a series of Peanuts strips, which detailed kindergartener Sally's frustrations with New Math. In the first strip, she is depicted puzzling over "sets, one-to-one matching, equivalent sets, non-equivalent sets, sets of one, sets of two, renaming two, subsets, joining sets, number sentences, placeholders." Eventually, she bursts into tears and exclaims, "All I want to know is, how much is two and two?" This series of strips was later adapted for the 1973 Peanuts animated special There's No Time for Love, Charlie Brown. Schulz also drew a one-panel illustration of Charlie Brown at his school desk exclaiming, "How can you do 'New Math' problems with an 'Old Math' mind?"
  • In the 1966 Hazel episode "A Little Bit of Genius", the show tackles the division that the introduction of New Math wrought between families, friends, and neighbors, as well as its impact on the then ever-widening generation gap.

See also

References

  1. Raimi, Ralph (May 6, 2004). "Chapter 1: Max". Retrieved April 24, 2018.
  2. ^ Kline, Morris (1973). Why Johnny Can't Add: The Failure of the New Math. New York: St. Martin's Press. ISBN 0-394-71981-6.
  3. Isbrucker, Asher (2021-04-21). "What Happened to 'New Math'?". Age of Awareness. Retrieved 2022-02-10.
  4. "Whatever Happened To New Math?". AMERICAN HERITAGE. Retrieved 2022-02-10.
  5. Simmons, George F. (2003). "Algebra – Introduction". Precalculus Mathematics in a Nutshell: Geometry, Algebra, Trigonometry: Geometry, Algebra, Trigonometry. Wipf and Stock Publishers. p. 33. ISBN 9781592441303.
  6. Feynman, Richard P. (1965). "New Textbooks for the 'New' Mathematics" (PDF). Engineering and Science. XXVIII (6): 9–15. ISSN 0013-7812.
  7. https://books.google.com/ngrams/graph?content=new+math&year_start=1800&year_end=2022&corpus=en&smoothing=3
  8. August, Melissa; Barovick, Harriet; Derrow, Michelle; Gray, Tam; Levy, Daniel S.; Lofaro, Lina; Spitz, David; Stein, Joel; Taylor, Chris (June 14, 1999). "The 100 Worst Ideas Of The Century". Time. Retrieved April 3, 2020.(subscription required)
  9. "100 Worst Ideas of the Century", Anvari.org archive of the June 14, 1999, issue of Time.
  10. "L'enseignement des mathématiques au XXe siècle". 2017-07-15. Archived from the original on 2017-07-15. Retrieved 2020-09-01.
  11. Malaty, George (1999). "The Third World Mathematics Education is a Hope for the World Mathematics Education Development in the 21st Century" (PDF). Proceedings of the International Conference Mathematics Education into the 21st Century: Societal Challenges, Issues and Approaches. Mathematics Education into the 21st Century: Societal Challenges, Issues and Approaches. Cairo, Egypt. pp. 231–240.
  12. "第二次大戦後のわが国における数学教育の発展について― 「科学化運動」から「生きる数学」への飛翔 ―". www.researchgate.net.
  13. Lehrer, Tom (2019). "New Math Lyrics". Genius Media Group. Retrieved May 19, 2019.
  14. Schulz, Charles (October 2, 1965). "Peanuts by Charles Schulz for October 02, 2012". GoComics. Universal Uclick. Retrieved May 19, 2019.
  15. Schulz, Charles. "Charlie Brown Poster (1970s) – Peanuts – How Can You do "New Math" Problems with an "Old Math" Mind?". Retrieved May 19, 2019 – via Chisholm Larsson Gallery.
  16. Russell, William D. (1966-04-04), A Little Bit of Genius, Hazel, retrieved 2022-04-10

Further reading

External links

Mathematics education
Geography
Approach
Categories:
New Math Add topic