Omnitruncated 8-simplex honeycomb | |
---|---|
(No image) | |
Type | Uniform honeycomb |
Family | Omnitruncated simplectic honeycomb |
Schläfli symbol | {3} |
Coxeter–Dynkin diagrams | |
7-face types | t01234567{3,3,3,3,3,3,3} |
Vertex figure | Irr. 8-simplex |
Symmetry | ×18, ] |
Properties | vertex-transitive |
In eight-dimensional Euclidean geometry, the omnitruncated 8-simplex honeycomb is a space-filling tessellation (or honeycomb). It is composed entirely of omnitruncated 8-simplex facets.
The facets of all omnitruncated simplectic honeycombs are called permutahedra and can be positioned in n+1 space with integral coordinates, permutations of the whole numbers (0,1,..,n).
A
8 lattice
The A
8 lattice (also called A
8) is the union of nine A8 lattices, and has the vertex arrangement of the dual honeycomb to the omnitruncated 8-simplex honeycomb, and therefore the Voronoi cell of this lattice is an omnitruncated 8-simplex
∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ = dual of .
Related polytopes and honeycombs
This honeycomb is one of 45 unique uniform honeycombs constructed by the Coxeter group. The symmetry can be multiplied by the ring symmetry of the Coxeter diagrams:
A8 honeycombs | ||||
---|---|---|---|---|
Enneagon symmetry |
Symmetry | Extended diagram |
Extended group |
Honeycombs |
a1 |
| |||
i2 | ] | ×2 |
| |
i6 | ] | ×6 | ||
r18 | ] | ×18 | 3 |
See also
Regular and uniform honeycombs in 8-space:
- 8-cubic honeycomb
- 8-demicubic honeycomb
- 8-simplex honeycomb
- Truncated 8-simplex honeycomb
- 521 honeycomb
- 251 honeycomb
- 152 honeycomb
Notes
- * Weisstein, Eric W. "Necklace". MathWorld., OEIS sequence A000029 46-1 cases, skipping one with zero marks
References
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, (1.9 Uniform space-fillings)
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III,
Fundamental convex regular and uniform honeycombs in dimensions 2–9 | ||||||
---|---|---|---|---|---|---|
Space | Family | / / | ||||
E | Uniform tiling | 0 | δ3 | hδ3 | qδ3 | Hexagonal |
E | Uniform convex honeycomb | 0 | δ4 | hδ4 | qδ4 | |
E | Uniform 4-honeycomb | 0 | δ5 | hδ5 | qδ5 | 24-cell honeycomb |
E | Uniform 5-honeycomb | 0 | δ6 | hδ6 | qδ6 | |
E | Uniform 6-honeycomb | 0 | δ7 | hδ7 | qδ7 | 222 |
E | Uniform 7-honeycomb | 0 | δ8 | hδ8 | qδ8 | 133 • 331 |
E | Uniform 8-honeycomb | 0 | δ9 | hδ9 | qδ9 | 152 • 251 • 521 |
E | Uniform 9-honeycomb | 0 | δ10 | hδ10 | qδ10 | |
E | Uniform 10-honeycomb | 0 | δ11 | hδ11 | qδ11 | |
E | Uniform (n-1)-honeycomb | 0 | δn | hδn | qδn | 1k2 • 2k1 • k21 |