Misplaced Pages

Pitman closeness criterion

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (March 2018) (Learn how and when to remove this message)

In statistical theory, the Pitman closeness criterion, named after E. J. G. Pitman, is a way of comparing two candidate estimators for the same parameter. Under this criterion, estimator A is preferred to estimator B if the probability that estimator A is closer to the true value than estimator B is greater than one half. Here the meaning of closer is determined by the absolute difference in the case of a scalar parameter, or by the Mahalanobis distance for a vector parameter.

References

  • Pitman, E. (1937) "The “closest” estimates of statistical parameters". Mathematical Proceedings of the Cambridge Philosophical Society, 33 (2), 212–222. doi:10.1017/S0305004100019563
  • Rukhin, A. (1996) "On the Pitman closeness criterion from the decision – Theoretic point of view". Statistics & Decisions, 14, 253–274.
  • Peddada, D. S. (1985) "A short note on Pitman’s measure of nearness". American Statistician, 39, 298–299.
  • Peddada, D. S. (1986) "Reply". American Statistician, 40, 2576
  • Nayak, T. K. (1990) "Estimation of location and scale parameters using generalized Pitman nearness criterion". Journal of Statistical Planning and Inference, 24, 259–268. doi:10.1016/0378-3758(90)90046-W
  • Nayak, T. K. (1994) "Pitman nearness comparison of some estimators of population variance", American Statistician 48, 99–102.
  • Nayak, T. K. (1998) "On equivariant estimation of the location of elliptical distributions under Pitman closeness criterion", Statistics and Probability Letters 36, 373–378.
  • Fountain, R. L. (1991) "Pitman closeness comparison of linear estimators: A canonical form", Commun. Statist.–Theory Meth., 20 (11), 3535–3550.
  • Ghosh, M.; Sen, P. K. (1989) Median unbiasedness and Pitman closeness. Journal of the American Statistical Association, 84, 1089–1091.
  • Johnson, N. L. (1950) "On the comparison of estimators", Biometrika, 37, 281–287. JSTOR 2332381
  • Keating, J. P.; Gupta, R. C. (1984) "Simultaneous comparison of scale estimators". Sankhya, Ser. B 46, 275–280. JSTOR 25052351
  • Keating, J. P.; Mason, R. L.; Sen, P. K. (1993) Pitman’s Measure of Closeness: A Comparison of Statistical Estimators, SIAM, Philadelphia. ISBN 9780898713084
  • Kubokawa, T. (1991) "Equivariant estimation under the Pitman closeness criterion". Commun. Statist.–Theory Meth., 20 (11), 3499–3523. doi:10.1080/03610929108830721
  • Lee, C. (1990) "On the characterization of Pitman’s measure of nearness". Statistics and Probability Letters, 8, 41–46.
  • Robert, Christian P.; Hwang, J. T. Gene; Strawderman, William E. (1993) "Is Pitman Closeness a Reasonable Criterion?", Journal of the American Statistical Association, 57–63 JSTOR 2290692
  • Blyth, C. R. (1993) "Is Pitman Closeness a Reasonable Criterion?: Comment", Journal of the American Statistical Association, 88 421), 72–74.
  • Casella, G.; Wells, M. T. (1993) "Is Pitman Closeness a Reasonable Criterion?: Comment", Journal of the American Statistical Association, 70–71.
  • Ghosh, M., Keating, J. P. and Sen, P. K. (1993) "Is Pitman Closeness a Reasonable Criterion?: Comment", Journal of the American Statistical Association, 88, 63–66.
  • Peddada, S. D. (1993) "Is Pitman Closeness a Reasonable Criterion?: Comment", Journal of the American Statistical Association, 88, 67–69.
  • Rao, C. R. (1993) "Is Pitman Closeness a Reasonable Criterion?: Comment", Journal of the American Statistical Association, 88, 69–70.
Categories:
Pitman closeness criterion Add topic