Misplaced Pages

Pyrethrin I

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Pyrethrin I
Names
Preferred IUPAC name (1S)-2-Methyl-4-oxo-3-cyclopent-2-en-1-yl (1R,3R)-2,2-dimethyl-3-(2-methylprop-1-en-1-yl)cyclopropane-1-carboxylate
Identifiers
CAS Number
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.004.051 Edit this at Wikidata
EC Number
  • 204-455-8
KEGG
PubChem CID
UNII
CompTox Dashboard (EPA)
InChI
  • InChI=1S/C21H28O3/c1-7-8-9-10-15-14(4)18(12-17(15)22)24-20(23)19-16(11-13(2)3)21(19,5)6/h7-9,11,16,18-19H,1,10,12H2,2-6H3/b9-8-/t16-,18+,19+/m1/s1Key: ROVGZAWFACYCSP-VUMXUWRFSA-N
SMILES
  • CC1=C(C(=O)C1OC(=O)2(C2(C)C)C=C(C)C)C/C=C\C=C
Properties
Chemical formula C21H28O3
Molar mass 328.44522
Hazards
GHS labelling:
Pictograms GHS07: Exclamation markGHS09: Environmental hazard
Signal word Warning
Hazard statements H302, H312, H332, H410
Precautionary statements P261, P264, P270, P271, P273, P280, P301+P312, P302+P352, P304+P312, P304+P340, P312, P322, P330, P363, P391, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). checkverify (what is  ?) Infobox references
Chemical compound

Pyrethrin I is one of the two pyrethrins, natural organic compounds with potent insecticidal activity. It is an ester of (+)-trans-chrysanthemic acid with (S)-(Z)-pyrethrolone.

Total synthesis

The synthesis of pyrethrin I involves the esterification of (+)-trans-chrysanthemic acid with (S)-(Z)-pyrethrolone. One synthetic method for each of these is shown in the images below. Sobti and Dev of the Malti-Chem Research Centre in Nadesari, vadodara, India published this method for chrysanthemic acid in 1974. The starting material for the synthesis uses commercially available (+)-3α, 4α-epoxycarane (1). A lactone is eventually formed and the ring is opened by the use of a Grignard reagent to give (+)-trans-chrysanthemic acid. The preparation of (S)-pyrethrolone is essentially a 2 step synthesis. The starting material (S)-4-hydroxy-3-methyl-2-(2-propynyl)-2-cyclopenten-1-one (7) is also commercially available as the alcohol moiety of ETOC. Tetrakis(triphenylphosphine)palladium(0), copper(I) iodide, triethylamine, and vinyl bromide are added to (7) to add two more carbons and form (8). The final step is the addition of an activated zinc compound to reduce the triple carbon bond to form the cis product, (S)-pyrethrolone (9). Although no journal articles specify the combining of the alcohol and acid moieties of pyrethrin I, they could be combined through an esterification process to form the wanted product.

Synthesis of the acid moiety

Synthesis of the alcohol moiety

References

  1. Sobti, R., Dev, S. (1974). "(+)-TRANS-CHRYSANTHEMIC ACID FROM (+)-Δ-Carene". Tetrahedron. 30 (16): 2927–2929. doi:10.1016/S0040-4020(01)97467-8.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. Matsuo, N., Takagaki, T., Watanabe, K., Ohno, N. (1993). "The First Practical Synthesis of (S)-Pyrethrolone, an Alcohol Moiety of Natural Pyrethrins I and II". Biosci. Biotechnol. Biochem. 57 (4): 693–694. doi:10.1271/bbb.57.693.{{cite journal}}: CS1 maint: multiple names: authors list (link)
Pest control: Insecticides
Carbamates
Inorganic compounds
Insect growth regulators
Neonicotinoids
Organochlorides
Organophosphorus
Pyrethroids
Diamides
Other chemicals
Metabolites
Biopesticides
Categories:
Pyrethrin I Add topic