In mathematics , a quadratic integral is an integral of the form
∫
d
x
a
+
b
x
+
c
x
2
.
{\displaystyle \int {\frac {dx}{a+bx+cx^{2}}}.}
It can be evaluated by completing the square in the denominator .
∫
d
x
a
+
b
x
+
c
x
2
=
1
c
∫
d
x
(
x
+
b
2
c
)
2
+
(
a
c
−
b
2
4
c
2
)
.
{\displaystyle \int {\frac {dx}{a+bx+cx^{2}}}={\frac {1}{c}}\int {\frac {dx}{\left(x+{\frac {b}{2c}}\right)^{\!2}+\left({\frac {a}{c}}-{\frac {b^{2}}{4c^{2}}}\right)}}.}
Positive-discriminant case
Assume that the discriminant q = b − 4ac is positive. In that case, define u and A by
u
=
x
+
b
2
c
,
{\displaystyle u=x+{\frac {b}{2c}},}
and
−
A
2
=
a
c
−
b
2
4
c
2
=
1
4
c
2
(
4
a
c
−
b
2
)
.
{\displaystyle -A^{2}={\frac {a}{c}}-{\frac {b^{2}}{4c^{2}}}={\frac {1}{4c^{2}}}(4ac-b^{2}).}
The quadratic integral can now be written as
∫
d
x
a
+
b
x
+
c
x
2
=
1
c
∫
d
u
u
2
−
A
2
=
1
c
∫
d
u
(
u
+
A
)
(
u
−
A
)
.
{\displaystyle \int {\frac {dx}{a+bx+cx^{2}}}={\frac {1}{c}}\int {\frac {du}{u^{2}-A^{2}}}={\frac {1}{c}}\int {\frac {du}{(u+A)(u-A)}}.}
The partial fraction decomposition
1
(
u
+
A
)
(
u
−
A
)
=
1
2
A
(
1
u
−
A
−
1
u
+
A
)
{\displaystyle {\frac {1}{(u+A)(u-A)}}={\frac {1}{2A}}\!\left({\frac {1}{u-A}}-{\frac {1}{u+A}}\right)}
allows us to evaluate the integral:
1
c
∫
d
u
(
u
+
A
)
(
u
−
A
)
=
1
2
A
c
ln
(
u
−
A
u
+
A
)
+
constant
.
{\displaystyle {\frac {1}{c}}\int {\frac {du}{(u+A)(u-A)}}={\frac {1}{2Ac}}\ln \left({\frac {u-A}{u+A}}\right)+{\text{constant}}.}
The final result for the original integral, under the assumption that q > 0, is
∫
d
x
a
+
b
x
+
c
x
2
=
1
q
ln
(
2
c
x
+
b
−
q
2
c
x
+
b
+
q
)
+
constant
.
{\displaystyle \int {\frac {dx}{a+bx+cx^{2}}}={\frac {1}{\sqrt {q}}}\ln \left({\frac {2cx+b-{\sqrt {q}}}{2cx+b+{\sqrt {q}}}}\right)+{\text{constant}}.}
Negative-discriminant case
In case the discriminant q = b − 4ac is negative, the second term in the denominator in
∫
d
x
a
+
b
x
+
c
x
2
=
1
c
∫
d
x
(
x
+
b
2
c
)
2
+
(
a
c
−
b
2
4
c
2
)
.
{\displaystyle \int {\frac {dx}{a+bx+cx^{2}}}={\frac {1}{c}}\int {\frac {dx}{\left(x+{\frac {b}{2c}}\right)^{\!2}+\left({\frac {a}{c}}-{\frac {b^{2}}{4c^{2}}}\right)}}.}
is positive. Then the integral becomes
1
c
∫
d
u
u
2
+
A
2
=
1
c
A
∫
d
u
/
A
(
u
/
A
)
2
+
1
=
1
c
A
∫
d
w
w
2
+
1
=
1
c
A
arctan
(
w
)
+
c
o
n
s
t
a
n
t
=
1
c
A
arctan
(
u
A
)
+
constant
=
1
c
a
c
−
b
2
4
c
2
arctan
(
x
+
b
2
c
a
c
−
b
2
4
c
2
)
+
constant
=
2
4
a
c
−
b
2
arctan
(
2
c
x
+
b
4
a
c
−
b
2
)
+
constant
.
{\displaystyle {\begin{aligned}{\frac {1}{c}}\int {\frac {du}{u^{2}+A^{2}}}&={\frac {1}{cA}}\int {\frac {du/A}{(u/A)^{2}+1}}\\&={\frac {1}{cA}}\int {\frac {dw}{w^{2}+1}}\\&={\frac {1}{cA}}\arctan(w)+\mathrm {constant} \\&={\frac {1}{cA}}\arctan \left({\frac {u}{A}}\right)+{\text{constant}}\\&={\frac {1}{c{\sqrt {{\frac {a}{c}}-{\frac {b^{2}}{4c^{2}}}}}}}\arctan \left({\frac {x+{\frac {b}{2c}}}{\sqrt {{\frac {a}{c}}-{\frac {b^{2}}{4c^{2}}}}}}\right)+{\text{constant}}\\&={\frac {2}{\sqrt {4ac-b^{2}\,}}}\arctan \left({\frac {2cx+b}{\sqrt {4ac-b^{2}}}}\right)+{\text{constant}}.\end{aligned}}}
References
Weisstein, Eric W. "Quadratic Integral ." From MathWorld --A Wolfram Web Resource, wherein the following is referenced:
Gradshteyn, Izrail Solomonovich ; Ryzhik, Iosif Moiseevich ; Geronimus, Yuri Veniaminovich ; Tseytlin, Michail Yulyevich ; Jeffrey, Alan (2015) . Zwillinger, Daniel; Moll, Victor Hugo (eds.). Table of Integrals, Series, and Products . Translated by Scripta Technica, Inc. (8 ed.). Academic Press, Inc. ISBN 978-0-12-384933-5 . LCCN 2014010276 .
Category :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑