Misplaced Pages

Ruthenium(III) chloride

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Ruthenium trichloride)
Ruthenium(III) chloride
Identifiers
CAS Number
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.030.139 Edit this at Wikidata
PubChem CID
RTECS number
  • VM2650000
UNII
CompTox Dashboard (EPA)
InChI
  • InChI=1S/3ClH.Ru/h3*1H;/q;;;+3/p-3Key: YBCAZPLXEGKKFM-UHFFFAOYSA-K
  • InChI=1/3ClH.Ru/h3*1H;/q;;;+3/p-3Key: YBCAZPLXEGKKFM-DFZHHIFOAX
SMILES
  • Cl(Cl)Cl
  • ...
Properties
Chemical formula RuCl3·xH2O
Molar mass 207.43 g/mol
Melting point >500°C (decomposes)
Solubility in water Soluble, Anhydrous is insoluble
Magnetic susceptibility (χ) +1998.0·10 cm/mol
Structure
Crystal structure trigonal (RuCl3), hP8
Space group P3c1, No. 158
Coordination geometry octahedral
Hazards
Flash point Nonflammable
Related compounds
Other anions Ruthenium(III) bromide
Other cations Rhodium(III) chloride
Iron(III) chloride
Related compounds Ruthenium tetroxide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). ☒verify (what is  ?) Infobox references
Chemical compound

Ruthenium(III) chloride is the chemical compound with the formula RuCl3. "Ruthenium(III) chloride" more commonly refers to the hydrate RuCl3·xH2O. Both the anhydrous and hydrated species are dark brown or black solids. The hydrate, with a varying proportion of water of crystallization, often approximating to a trihydrate, is a commonly used starting material in ruthenium chemistry.

Preparation and properties

Anhydrous ruthenium(III) chloride is usually prepared by heating powdered ruthenium metal with chlorine. In the original synthesis, the chlorination was conducted in the presence of carbon monoxide, the product being carried by the gas stream and crystallising upon cooling. Two polymorphs of RuCl3 are known. The black α-form adopts the CrCl3-type structure with long Ru-Ru contacts of 346 pm. This polymorph has honeycomb layers of Ru which are surrounded with an octahedral cage of Cl anions. The ruthenium cations are magnetic residing in a low-spin J~1/2 ground state with net angular momentum L=1. Layers of α-RuCl3 are stacked on top of each other with weak Van der Waals forces. These can be cleaved to form mono-layers using scotch tape.

The dark brown metastable β-form crystallizes in a hexagonal cell; this form consists of infinite chains of face-sharing octahedra with Ru-Ru contacts of 283 pm, similar to the structure of zirconium trichloride. The β-form is irreversibly converted to the α-form at 450–600 °C. The β-form is diamagnetic, whereas α-RuCl3 is paramagnetic at room temperature.

RuCl3 vapour decomposes into the elements at high temperatures ; the enthalpy change at 750 °C (1020 K), ΔdissH1020 has been estimated as +240 kJ/mol.

Solid state physics

α-RuCl3 was proposed as a candidate for a Kitaev quantum spin liquid state when neutron scattering revealed an unusual magnetic spectrum, and thermal transport revealed chiral Majorana Fermions when subject to a magnetic field.

Coordination chemistry of hydrated ruthenium trichloride

As the most commonly available ruthenium compound, RuCl3·xH2O is the precursor to many hundreds of chemical compounds. The noteworthy property of ruthenium complexes, chlorides and otherwise, is the existence of more than one oxidation state, several of which are kinetically inert. All second and third-row transition metals form exclusively low spin complexes, whereas ruthenium is special in the stability of adjacent oxidation states, especially Ru(II), Ru(III) (as in the parent RuCl3·xH2O) and Ru(IV).

Illustrative complexes derived from "ruthenium trichloride"

  • RuCl2(PPh3)3, a chocolate-colored, benzene-soluble species, which in turn is also a versatile starting material. It arises approximately as follows:
2 RuCl3·xH2O + 7 PPh3 → 2 RuCl2(PPh3)3 + OPPh3 + 5 H2O + 2 HCl
2 RuCl3·xH2O + 2 C6H82 + 6 H2O + 2 HCl + H2
  • Ru(bipy)3Cl2, an intensely luminescent salt with a long-lived excited state, arising as follows:
2 RuCl3·xH2O + 6 bipy + CH3CH2OH → 2 Cl2 + 6 H2O + CH3CHO + 2 HCl

This reaction proceeds via the intermediate cis-Ru(bipy)2Cl2.

  • 2, arising as follows:
2 RuCl3·xH2O + 2 C5Me5H → 2 + 6 H2O + 2 HCl

2 can be further reduced to 4.

  • Ru(C5H7O2)3 arises as follows:
RuCl3·xH2O + 3 C5H8O2 → Ru(C5H7O2)3 + 3 H2O + 3 HCl
  • RuO4, is produced by oxidation.

Some of these compounds were utilized in the research related to two Nobel Prizes. Ryōji Noyori was awarded the Nobel Prize in Chemistry in 2001 for the development of practical asymmetric hydrogenation catalysts based on ruthenium. Robert H. Grubbs was awarded the Nobel Prize in Chemistry in 2005 for the development of practical alkene metathesis catalysts based on ruthenium alkylidene derivatives.

Carbon monoxide derivatives

RuCl3(H2O)x reacts with carbon monoxide under mild conditions. In contrast, iron chlorides do not react with CO. CO reduces the red-brown trichloride to yellowish Ru(II) species. Specifically, exposure of an ethanol solution of RuCl3(H2O)x to 1 atm of CO gives, depending on the specific conditions, , , and . Addition of ligands (L) to such solutions gives Ru-Cl-CO-L compounds (L = PR3). Reduction of these carbonylated solutions with Zn affords the orange triangular cluster Ru3(CO)12.

3 RuCl3·xH2O + 4.5 Zn + 12 CO (high pressure) → Ru3(CO)12 + 3x H2O + 4.5 ZnCl2

Sources

References

  1. Remy, H.; Kühn, M. (1924). "Beiträge zur Chemie der Platinmetalle. V. Thermischer Abbau des Ruthentrichlorids und des Ruthendioxyds". Z. Anorg. Allg. Chem. 137 (1): 365–388. doi:10.1002/zaac.19241370127.
  2. Bublitz, D. E; McEwen, W. E.; Kleinberg, J. (1961). "Ruthenocene". Organic Syntheses. 41: 96. doi:10.15227/orgsyn.041.0096.
  3. Fletcher, J. M.; Gardner, W. E.; Hooper, E. W.; Hyde, K. R.; Moore, F. H.; Woodhead, J. L. (September 1963). "Anhydrous Ruthenium Chlorides". Nature. 199 (4898): 1089–1090. Bibcode:1963Natur.199.1089F. doi:10.1038/1991089a0. ISSN 0028-0836. S2CID 4179795.
  4. Plumb, K. W.; Clancy, J. P.; Sandilands, L. J.; Shankar, V. Vijay; Hu, Y. F.; Burch, K. S.; Kee, Hae-Young; Kim, Young-June (2014-07-29). "α−RuCl3: A Spin-Orbit Assisted Mott Insulator on a Honeycomb Lattice". Physical Review B. 90 (4): 041112. arXiv:1403.0883. Bibcode:2014PhRvB..90d1112P. doi:10.1103/physrevb.90.041112. ISSN 1098-0121. S2CID 29688091.
  5. Zhou, Boyi; Wang, Yiping; Osterhoudt, Gavin B.; Lampen-Kelley, Paula; Mandrus, David; He, Rui; Burch, Kenneth S.; Henriksen, Erik A. (2019). "Possible Structural Transformation and Enhanced Magnetic Fluctuations in Exfoliated αRuCl3". Journal of Physics and Chemistry of Solids. 128: 291–295. arXiv:1709.00431. Bibcode:2019JPCS..128..291Z. doi:10.1016/j.jpcs.2018.01.026. ISSN 0022-3697. S2CID 103743571.
  6. Fletcher, J. M.; Gardner, W. E.; Fox, A. C.; Topping, G. (1967). "X-Ray, infrared, and magnetic studies of α- and β-ruthenium trichloride". Journal of the Chemical Society A: Inorganic, Physical, Theoretical: 1038–1045. doi:10.1039/J19670001038.
  7. Banerjee, A.; Bridges, C. A.; Yan, J.-Q.; Aczel, A. A.; Li, L.; Stone, M. B.; Granroth, G. E.; Lumsden, M. D.; Yiu, Y. (2016-04-04). "Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet". Nature Materials. 15 (7): 733–740. arXiv:1504.08037. Bibcode:2016NatMa..15..733B. doi:10.1038/nmat4604. ISSN 1476-1122. PMID 27043779. S2CID 3406627.
  8. Banerjee, Arnab; Yan, Jiaqiang; Knolle, Johannes; Bridges, Craig A.; Stone, Matthew B.; Lumsden, Mark D.; Mandrus, David G.; Tennant, David A.; Moessner, Roderich (2017-06-09). "Neutron scattering in the proximate quantum spin liquid α-RuCl 3". Science. 356 (6342): 1055–1059. arXiv:1609.00103. Bibcode:2017Sci...356.1055B. doi:10.1126/science.aah6015. ISSN 0036-8075. PMID 28596361. S2CID 206652434.
  9. Do, Seung-Hwan; Park, Sang-Youn; Yoshitake, Junki; Nasu, Joji; Motome, Yukitoshi; Kwon, Yong Seung; Adroja, D. T.; Voneshen, D. J.; Kim, Kyoo (2017-09-18). "Majorana fermions in the Kitaev quantum spin system α-RuCl3". Nature Physics. 13 (11): 1079–1084. Bibcode:2017NatPh..13.1079D. doi:10.1038/nphys4264. ISSN 1745-2473. S2CID 126423385.
  10. Banerjee, Arnab; Lampen-Kelley, Paula; Knolle, Johannes; Balz, Christian; Aczel, Adam Anthony; Winn, Barry; Liu, Yaohua; Pajerowski, Daniel; Yan, Jiaqiang; Bridges, Craig A.; Savici, Andrei T.; Chakoumakos, Bryan C.; Lumsden, Mark D.; Tennant, David Alan; Moessner, Roderich; Mandrus, David G.; Nagler, Stephen E. (2018-02-20). "Excitations in the field-induced quantum spin liquid state of α-RuCl 3". npj Quantum Materials. 3 (1): 8. arXiv:1706.07003. Bibcode:2018npjQM...3....8B. doi:10.1038/s41535-018-0079-2. ISSN 2397-4648. S2CID 55484993.
  11. Kasahara, Y.; Ohnishi, T.; Mizukami, Y.; Tanaka, O.; Ma, Sixiao; Sugii, K.; Kurita, N.; Tanaka, H.; Nasu, J. (July 2018). "Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid". Nature. 559 (7713): 227–231. arXiv:1805.05022. Bibcode:2018Natur.559..227K. doi:10.1038/s41586-018-0274-0. ISSN 0028-0836. PMID 29995863. S2CID 49664700.
  12. P. S. Hallman, T. A. Stephenson, G. Wilkinson "Tetrakis(Triphenylphosphine)Dichloro-Ruthenium(II) and Tris(Triphenylphosphine)-Dichlororuthenium(II)" Inorganic Syntheses, 1970 Volume 12, . doi:10.1002/9780470132432.ch40
  13. Bennett, Martin A.; Smith, Anthony K. (1974-01-01). "Arene ruthenium(II) complexes formed by dehydrogenation of cyclohexadienes with ruthenium(III) trichloride". Journal of the Chemical Society, Dalton Transactions (2): 233–241. doi:10.1039/dt9740000233. ISSN 1364-5447.
  14. Bennett, M. A.; Huang, T. N.; Matheson, T. W. & Smith, A. K. (1982). (η-Hexamethylbenzene)ruthenium Complexes. Inorganic Syntheses. Vol. 21. pp. 74–8. doi:10.1002/9780470132524.ch16. ISBN 9780470132524.
  15. ^ Broomhead, J. A.; Young, C. G. (1990). Tris(2,2'-bipyridine)Ruthenium(II) Dichloride Hexahydrate. Inorganic Syntheses. Vol. 28. pp. 338–340. doi:10.1002/9780470132593.ch86. ISBN 9780470132593.
  16. Kölle, Urich; Kossakowski, Janusz (1992). Di-μ-Chloro-Bis, 2 and Di-μ-methoxo-Bis(η5-Pentamethylcyclopentadienyl)diruthenium(II), 2. Inorganic Syntheses. Vol. 29. pp. 225–228. doi:10.1002/9780470132609.ch52. ISBN 9780470132609.
  17. Gupta, A. (2000). "Improved synthesis and reactivity of tris(acetylacetonato)ruthenium(III)". Indian Journal of Chemistry, Section A. 39A (4): 457. ISSN 0376-4710.
  18. Hill, A. F. (2000). ""Simple" Ruthenium Carbonyls of Ruthenium: New Avenues from the Hieber Base Reaction". Angew. Chem. Int. Ed. 39 (1): 130–134. doi:10.1002/(SICI)1521-3773(20000103)39:1<130::AID-ANIE130>3.0.CO;2-6. PMID 10649352.

Further reading

Ruthenium compounds
Ru(0)
Ru(I)
Ru(II)
Ru(II,III)
Ru(III)
Ru(IV)
Ru(V)
Ru(VI)
Ru(VII)
Ru(VIII)
Salts and covalent derivatives of the chloride ion
HCl He
LiCl BeCl2 B4Cl4
B12Cl12
BCl3
B2Cl4
+BO3
C2Cl2
C2Cl4
C2Cl6
CCl4
+C
+CO3
NCl3
ClN3
+N
+NO3
ClxOy
Cl2O
Cl2O2
ClO
ClO2
Cl2O4
Cl2O6
Cl2O7
ClO4
+O
ClF
ClF3
ClF5
Ne
NaCl MgCl2 AlCl
AlCl3
Si5Cl12
Si2Cl6
SiCl4
P2Cl4
PCl3
PCl5
+P
S2Cl2
SCl2
SCl4
+SO4
Cl2 Ar
KCl CaCl
CaCl2
ScCl3 TiCl2
TiCl3
TiCl4
VCl2
VCl3
VCl4
VCl5
CrCl2
CrCl3
CrCl4
MnCl2
MnCl3
FeCl2
FeCl3
CoCl2
CoCl3
NiCl2 CuCl
CuCl2
ZnCl2 GaCl
GaCl3
GeCl2
GeCl4
AsCl3
AsCl5
+As
Se2Cl2
SeCl2
SeCl4
BrCl Kr
RbCl SrCl2 YCl3 ZrCl2
ZrCl3
ZrCl4
NbCl3
NbCl4
NbCl5
MoCl2
MoCl3
MoCl4
MoCl5
MoCl6
TcCl3
TcCl4
RuCl2
RuCl3
RuCl4
RhCl3 PdCl2 AgCl CdCl2 InCl
InCl2
InCl3
SnCl2
SnCl4
SbCl3
SbCl5
Te3Cl2
TeCl2
TeCl4
ICl
ICl3
XeCl
XeCl2
XeCl4
CsCl BaCl2 * LuCl3 HfCl4 TaCl3
TaCl4
TaCl5
WCl2
WCl3
WCl4
WCl5
WCl6
ReCl3
ReCl4
ReCl5
ReCl6
OsCl2
OsCl3
OsCl4
OsCl5
IrCl2
IrCl3
IrCl4
PtCl2
PtCl4
AuCl
(Au)2
AuCl3
Hg2Cl2
HgCl2
TlCl
TlCl3
PbCl2
PbCl4
BiCl3 PoCl2
PoCl4
AtCl Rn
FrCl RaCl2 ** LrCl3 RfCl4 DbCl5 SgO2Cl2 BhO3Cl Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
* LaCl3 CeCl3 PrCl3 NdCl2
NdCl3
PmCl3 SmCl2
SmCl3
EuCl2
EuCl3
GdCl3 TbCl3 DyCl2
DyCl3
HoCl3 ErCl3 TmCl2
TmCl3
YbCl2
YbCl3
** AcCl3 ThCl3
ThCl4
PaCl4
PaCl5
UCl3
UCl4
UCl5
UCl6
NpCl3 PuCl3 AmCl2
AmCl3
CmCl3 BkCl3 CfCl3
CfCl2
EsCl2
EsCl3
FmCl2 MdCl2 NoCl2
Categories:
Ruthenium(III) chloride Add topic