Misplaced Pages

Shannon coding

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Lossless data compression technique

In the field of data compression, Shannon coding, named after its creator, Claude Shannon, is a lossless data compression technique for constructing a prefix code based on a set of symbols and their probabilities (estimated or measured). It is suboptimal in the sense that it does not achieve the lowest possible expected code word length like Huffman coding does, and never better than but sometimes equal to the Shannon–Fano coding (Fano's method).

The method was the first of its type, the technique was used to prove Shannon's noiseless coding theorem in his 1948 article "A Mathematical Theory of Communication", and is therefore a centerpiece of the information age.

Shannon–Fano coding methods gave rise to the field of information theory and without its contributions, the world would not have any of the many successors; for example Huffman coding, or arithmetic coding. Much of our day-to-day lives are significantly influenced by digital data and this would not be possible without Shannon-Fano coding and the ongoing evolution of its methods.

In Shannon coding, the symbols are arranged in order from most probable to least probable, and assigned codewords by taking the first l i = log 2 p i {\displaystyle l_{i}=\left\lceil -\log _{2}p_{i}\right\rceil } bits from the binary expansions of the cumulative probabilities k = 1 i 1 p k . {\displaystyle \sum \limits _{k=1}^{i-1}p_{k}.} Here x {\displaystyle \lceil x\rceil } denotes the ceiling function (which rounds x {\displaystyle x} up to the next integer value).

Example

In the table below is an example of creating a code scheme for symbols a1 to a6. The value of li gives the number of bits used to represent the symbol ai. The last column is the bit code of each symbol.

i pi li n = 0 i 1 p n {\displaystyle \sum _{n=0}^{i-1}p_{n}} Previous value in binary Codeword for ai
1 0.36 2 0.0 0.0000 00
2 0.18 3 0.36 0.0101... 010
3 0.18 3 0.54 0.1000... 100
4 0.12 4 0.72 0.1011... 1011
5 0.09 4 0.84 0.1101... 1101
6 0.07 4 0.93 0.1110... 1110

References

  1. Shannon, Claude E. (July 1948). "A Mathematical Theory of Communication [reprint with corrections]" (PDF). Bell System Technical Journal. 27 (3): 379–423. doi:10.1002/j.1538-7305.1948.tb01338.x. hdl:11858/00-001M-0000-002C-4314-2.
  2. Ze-Nian Li; Mark S. Drew; Jiangchuan Liu (9 April 2014). Fundamentals of Multimedia. Springer Science & Business Media. ISBN 978-3-319-05290-8.

Shannon, Claude Elwood. "A Mathematical Theory of Communication." ACM SIGMOBILE mobile computing and communications review 5.1 (2001): 3-55.

Data compression methods
Lossless
Entropy type
Dictionary type
Other types
Hybrid
Lossy
Transform type
Predictive type
Audio
Concepts
Codec parts
Image
Concepts
Methods
Video
Concepts
Codec parts
Theory
Community
People
Categories:
Shannon coding Add topic