Misplaced Pages

Smart rubber

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (September 2023)
This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (August 2014) (Learn how and when to remove this message)
(Learn how and when to remove this message)

Smart rubber is a polymeric material that is able to "heal" when torn. Near room temperature this process is reversible and can be cycled several times. Supramolecular self-healing rubber can be processed, re-used, and ultimately recycled. The edges of a tear can be held together, and they will simply re-bond into apparent solidity. This is done by utilizing a hydrogen-bonding polymer, rather than producing a material whose structure would depend on covalent bonding and ionic bonding between chains, which is typical of normal rubber. In this case hydrogen bonding can occur simply by pressing two faces of the substance together, allowing the recovery of a continuous hydrogen bonding network.

Hydrogen bonding networks

Smart rubber will recover its original mechanical strength within several hours of being split and then subsequently recombined. Residual hydrogen bond donors and acceptors responsible for the self-healing properties of the elastomer remain unpaired until the newly exposed surface comes in contact with another complementary surface, allowing formation of new intermolecular hydrogen bonds.

Comparisons with conventional rubber

When compared to rubber, which is covalently cross-linked, smart rubber cannot continually hold mechanical stress without undergoing gradual plastic deformation, and strain recovery is typically slow.

See also

References

  • "Smart rubber promises self-mending products". newscientist.com. Retrieved July 15, 2012.
  • Montarnal, Damien; Cordier, Philippe; Soulié-Ziakovic, Corinne; Tournilhac, François; Leibler, Ludwik (15 December 2008). "Synthesis of self-healing supramolecular rubbers from fatty acid derivatives, diethylene triamine, and urea". Journal of Polymer Science Part A: Polymer Chemistry. 46 (24): 7925–7936. doi:10.1002/pola.23094.
  • Montarnal, Damien; Tournilhac, François; Hidalgo, Manuel; Couturier, Jean-Luc; Leibler, Ludwik (17 June 2009). "Versatile One-Pot Synthesis of Supramolecular Plastics and Self-Healing Rubbers". Journal of the American Chemical Society. 131 (23): 7966–7967. doi:10.1021/ja903080c. PMID 19456158.
  • Wietor, Jean-Luc; Sijbesma, Rint P. (13 October 2008). "A Self-Healing Elastomer". Angewandte Chemie International Edition. 47 (43): 8161–8163. doi:10.1002/anie.200803072. PMID 18798188.
Categories:
Smart rubber Add topic