Misplaced Pages

Solar eclipse of January 22, 1898

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Total eclipse
Solar eclipse of January 22, 1898
Map
Type of eclipse
NatureTotal
Gamma0.5079
Magnitude1.0244
Maximum eclipse
Duration141 s (2 min 21 s)
Coordinates9°30′N 63°36′E / 9.5°N 63.6°E / 9.5; 63.6
Max. width of band96 km (60 mi)
Times (UTC)
Greatest eclipse7:19:12
References
Saros139 (23 of 71)
Catalog # (SE5000)9275

A total solar eclipse occurred at the Moon's ascending node of orbit on Saturday, January 22, 1898. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.8 days after perigee (on January 20, 1898, at 12:30 UTC), the Moon's apparent diameter was larger.

The path of totality was visible from parts of the Royal Niger Company, Kamerun, Upper Ubanghi, British East Africa, Abyssinia, Italian Somaliland, Hindustan, Nepal, and the Chinese Empire. A partial solar eclipse was also visible for much of Africa, Europe, and Asia.

Observations


1.5 second exposure

9 second exposure
Annie Maunder

Wide view of streamers with the planet Venus

Sketch

There were two organised expeditions to India to observe this eclipse. One was from the British Astronomical Association and the other was led by K D Naegamvala of the Maharaja Taihtasingji Observatory.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.

January 22, 1898 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 1898 January 22 at 04:45:48.1 UTC
First Umbral External Contact 1898 January 22 at 05:48:14.1 UTC
First Central Line 1898 January 22 at 05:48:33.2 UTC
First Umbral Internal Contact 1898 January 22 at 05:48:52.2 UTC
Greatest Duration 1898 January 22 at 07:14:10.5 UTC
Greatest Eclipse 1898 January 22 at 07:19:11.8 UTC
Ecliptic Conjunction 1898 January 22 at 07:24:30.5 UTC
Equatorial Conjunction 1898 January 22 at 07:37:20.4 UTC
Last Umbral Internal Contact 1898 January 22 at 08:49:22.0 UTC
Last Central Line 1898 January 22 at 08:49:39.2 UTC
Last Umbral External Contact 1898 January 22 at 08:49:56.3 UTC
Last Penumbral External Contact 1898 January 22 at 09:52:32.1 UTC
January 22, 1898 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 1.02440
Eclipse Obscuration 1.04940
Gamma 0.50791
Sun Right Ascension 20h18m29.6s
Sun Declination -19°38'50.6"
Sun Semi-Diameter 16'14.8"
Sun Equatorial Horizontal Parallax 08.9"
Moon Right Ascension 20h17m48.1s
Moon Declination -19°09'57.2"
Moon Semi-Diameter 16'24.3"
Moon Equatorial Horizontal Parallax 1°00'12.5"
ΔT -4.9 s

Eclipse season

See also: Eclipse cycle

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of January 1898
January 8
Descending node (full moon)
January 22
Ascending node (new moon)
Partial lunar eclipse
Lunar Saros 113
Total solar eclipse
Solar Saros 139

Related eclipses

Eclipses in 1898

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 139

Inex

Triad

Solar eclipses of 1895–1899

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.

The partial solar eclipses on March 26, 1895 and September 18, 1895 occur in the previous lunar year eclipse set, and the partial solar eclipse on December 13, 1898 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 1895 to 1899
Descending node   Ascending node
Saros Map Gamma Saros Map Gamma
114 August 20, 1895

Partial
1.3911 119 February 13, 1896

Annular
−0.9220
124 August 9, 1896

Total
0.6964 129 February 1, 1897

Annular
−0.1903
134 July 29, 1897

Annular
−0.0640 139 January 22, 1898

Total
0.5079
144 July 18, 1898

Annular
−0.8546 149 January 11, 1899

Partial
1.1558

Saros 139

This eclipse is a part of Saros series 139, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on May 17, 1501. It contains hybrid eclipses from August 11, 1627 through December 9, 1825 and total eclipses from December 21, 1843 through March 26, 2601. There are no annular eclipses in this set. The series ends at member 71 as a partial eclipse on July 3, 2763. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality will be produced by member 61 at 7 minutes, 29.22 seconds on July 16, 2186. This date is the longest solar eclipse computed between 4000 BC and AD 6000. All eclipses in this series occur at the Moon’s ascending node of orbit.

Series members 18–39 occur between 1801 and 2200:
18 19 20

November 29, 1807

December 9, 1825

December 21, 1843
21 22 23

December 31, 1861

January 11, 1880

January 22, 1898
24 25 26

February 3, 1916

February 14, 1934

February 25, 1952
27 28 29

March 7, 1970

March 18, 1988

March 29, 2006
30 31 32

April 8, 2024

April 20, 2042

April 30, 2060
33 34 35

May 11, 2078

May 22, 2096

June 3, 2114
36 37 38

June 13, 2132

June 25, 2150

July 5, 2168
39

July 16, 2186

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

25 eclipse events between April 5, 1837 and June 17, 1928
April 5–6 January 22–23 November 10–11 August 28–30 June 17–18
107 109 111 113 115

April 5, 1837

January 22, 1841

November 10, 1844

August 28, 1848

June 17, 1852
117 119 121 123 125

April 5, 1856

January 23, 1860

November 11, 1863

August 29, 1867

June 18, 1871
127 129 131 133 135

April 6, 1875

January 22, 1879

November 10, 1882

August 29, 1886

June 17, 1890
137 139 141 143 145

April 6, 1894

January 22, 1898

November 11, 1901

August 30, 1905

June 17, 1909
147 149 151 153 155

April 6, 1913

January 23, 1917

November 10, 1920

August 30, 1924

June 17, 1928

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

The partial solar eclipses on December 7, 2170 (part of Saros 164) and November 7, 2181 (part of Saros 165) are also a part of this series but are not included in the table below.

Series members between 1801 and 2105

September 28, 1810
(Saros 131)

August 27, 1821
(Saros 132)

July 27, 1832
(Saros 133)

June 27, 1843
(Saros 134)

May 26, 1854
(Saros 135)

April 25, 1865
(Saros 136)

March 25, 1876
(Saros 137)

February 22, 1887
(Saros 138)

January 22, 1898
(Saros 139)

December 23, 1908
(Saros 140)

November 22, 1919
(Saros 141)

October 21, 1930
(Saros 142)

September 21, 1941
(Saros 143)

August 20, 1952
(Saros 144)

July 20, 1963
(Saros 145)

June 20, 1974
(Saros 146)

May 19, 1985
(Saros 147)

April 17, 1996
(Saros 148)

March 19, 2007
(Saros 149)

February 15, 2018
(Saros 150)

January 14, 2029
(Saros 151)

December 15, 2039
(Saros 152)

November 14, 2050
(Saros 153)

October 13, 2061
(Saros 154)

September 12, 2072
(Saros 155)

August 13, 2083
(Saros 156)

July 12, 2094
(Saros 157)

June 12, 2105
(Saros 158)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200

March 24, 1811
(Saros 136)

March 4, 1840
(Saros 137)

February 11, 1869
(Saros 138)

January 22, 1898
(Saros 139)

January 3, 1927
(Saros 140)

December 14, 1955
(Saros 141)

November 22, 1984
(Saros 142)

November 3, 2013
(Saros 143)

October 14, 2042
(Saros 144)

September 23, 2071
(Saros 145)

September 4, 2100
(Saros 146)

August 15, 2129
(Saros 147)

July 25, 2158
(Saros 148)

July 6, 2187
(Saros 149)

References

  1. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 26 August 2024.
  2. British Astronomical Association, London; Maunder, Edward Walter (1899). The Indian eclipse, 1898; report of the expeditions organized by the British Astronomical Association to observe the total solar eclipse of 1898, January 22. Gerstein - University of Toronto. London Hazell, Watson, and Winey.
  3. Naegamvala, kavasji Dadabhai (1902). Report On The Total Solar Eclipse Of January 21-22,1898 As Observed At Jeur In Western India.
  4. "Total Solar Eclipse of 1898 Jan 22". EclipseWise.com. Retrieved 26 August 2024.
  5. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  6. Ten Millennium Catalog of Long Solar Eclipses, −3999 to +6000 (4000 BCE to 6000 CE) Fred Espenak.
  7. "NASA - Catalog of Solar Eclipses of Saros 139". eclipse.gsfc.nasa.gov.
Solar eclipses
Features
Lists of eclipses
By era
Saros series (list)
Visibility
Historical
21 August 2017 total solar eclipse
Total/hybrid eclipses
→ next total/hybrid
10 May 2013 annular eclipse
Annular eclipses
→ next annular
23 October 2014 partial eclipse
Partial eclipses
→ next partial
Other bodies
Related
Categories: