Old page wikitext, before the edit (old_wikitext ) | 'The '''power factor''' of an [[alternating current|AC]] electric power system is defined as the [[ratio]] of the [[AC power#Real, reactive, and apparent power|real power]] flowing to the load to the [[AC power#Real, reactive, and apparent power|apparent power]],<ref> ''IEEE Std. 100 Authoritative Dictionary of Standards Terms, 7th edition''ISBN 0-7381 -2601 -2</ref><ref> IEEE Std. 1459 says (Note 1, section 3.1.1.1) real power only flows to the load and can never be negative </ref> and is a number between 0 and 1 (frequently expressed as a percentage, e.g. 0.5 pf = 50% pf). Real [[Power (physics)|power]] is the capacity of the circuit for performing work in a particular time. Apparent power is the product of the current and voltage of the circuit. Due to energy stored in the load and returned to the source, or due to a non-linear load that distorts the wave shape of the current drawn from the source, the apparent power can be greater than the real power.
In an electric power system, a load with low power factor draws more current than a load with a high power factor for the same amount of useful power transferred. The higher currents increase the energy lost in the distribution system, and require larger wires and other equipment. Because of the costs of larger equipment and wasted energy, electrical utilities will usually charge a higher cost to industrial or commercial customers where there is a low power factor.
Linear loads with low power factor (such as [[induction motor]]s) can be corrected with a passive network of [[capacitor]]s or [[inductor]]s. Non-linear loads, such as [[rectifier]]s, distort the current drawn from the system. In such cases, active or passive power factor correction may be used to counteract the distortion and raise power factor. The devices for correction of power factor may be at a central substation, or spread out over a distribution system, or built into power-consuming equipment.
==Power factor in linear circuit==
[[File:Power factor 1.svg|right|thumb|300px|Instantaneous and average power calculated from AC voltage and current with a unity power factor ({{phisymbol}}=0, cos{{phisymbol}}=1)]]
[[File:Power factor 0.svg|right|thumb|300px|Instantaneous and average power calculated from AC voltage and current with a zero power factor ({{phisymbol}}=90, cos{{phisymbol}}=0)]]
[[File:Power factor 0.7.svg|right|thumb|300px|Instantaneous and average power calculated from AC voltage and current with a lagging power factor ({{phisymbol}}=45, cos{{phisymbol}}=0.71)]]
In a purely resistive AC circuit, voltage and current waveforms are in step (or in phase), changing polarity at the same instant in each cycle. Where [[Reactance (electronics)|reactive]] loads are present, such as with [[capacitor]]s or [[inductor]]s, energy storage in the loads result in a time difference between the current and voltage waveforms. This stored energy returns to the source and is not available to do work at the load. Thus, a circuit with a low power factor will use higher currents to transfer a given quantity of real power than a circuit with a high power factor. A linear load does not change the shape of the waveform of the current, but may change the relative timing (phase) between voltage and current.
Circuits containing purely resistive heating elements (filament lamps, strip heaters, cooking stoves, etc.) have a power factor of 1.0. Circuits containing inductive or capacitive elements (electric motors, [[solenoid]] valves, [[Electrical ballast|lamp ballasts]], and others ) often have a power factor below 1.0.
===Definition and calculation===
AC power flow has the three components: real power (P), measured in [[watt]]s (W); apparent power (S), measured in volt-amperes (VA); and reactive power (Q), measured in reactive volt-amperes (var).
The power factor is defined as:
:<math>\frac{P}{S}</math>.
(λ=P/S)
In the case of a perfectly [[Sine wave|sinusoidal]] waveform, P, Q and S can be expressed as vectors that form a [[vector (geometry)|vector]] triangle such that:
:<math>S^2\,\! = {P^2\,\!} + {Q^2\,\!}.</math>
If <math>\phi</math> is the [[phase angle]] between the current and voltage, then the power factor is equal to <math>\left|\cos\phi\right|</math>, and:
:<math> P = S \left|\cos\phi\right|. </math>
Since the units are consistent, the power factor is by definition a [[dimensionless number]] between 0 and 1. When power factor is equal to 0, the energy flow is entirely reactive, and stored energy in the load returns to the source on each cycle. When the power factor is 1, all the energy supplied by the source is consumed by the load. Power factors are usually stated as "leading" or "lagging" to show the sign of the phase angle.
If a purely resistive load is connected to a power supply, current and voltage will change polarity in step, the power factor will be unity (1), and the electrical energy flows in a single direction across the network in each cycle. Inductive loads such as transformers and motors (any type of wound coil) consume reactive power with current waveform lagging the voltage. Capacitive loads such as capacitor banks or buried cable generate reactive power with current phase leading the voltage. Both types of loads will absorb energy during part of the AC cycle, which is stored in the device's magnetic or electric field, only to return this energy back to the source during the rest of the cycle.
For example, to get 1 kW of real power, if the power factor is unity, 1 kVA of apparent power needs to be transferred (1 kW ÷ 1 = 1 kVA). At low values of power factor, more apparent power needs to be transferred to get the same real power. To get 1 kW of real power at 0.2 power factor, 5 kVA of apparent power needs to be transferred (1 kW ÷ 0.2 = 5 kVA). This apparent power must be produced and transmitted to the load in the conventional fashion, and is subject to the usual distributed losses in the production and transmission processes.
===Linear loads===
Electrical loads consuming [[AC power|alternating current power]] consume both real power and reactive power. The vector sum of real and reactive power is the apparent power. The presence of reactive power causes the real power to be less than the apparent power, and so, the electric load has a power factor of less than 1.
===Power factor correction of linear loads===
It is often desirable to adjust the power factor of a system to near 1.0. This ''power factor correction'' (PFC) is achieved by switching in or out banks of [[inductor]]s or [[capacitor]]s. For example the inductive effect of motor loads may be offset by locally connected capacitors. When reactive elements supply or absorb reactive power near the load, the apparent power is reduced.
Power factor correction may be applied by an [[electrical power transmission]] utility to improve the stability and efficiency of the transmission network. Correction equipment may be installed by individual electrical customers to reduce the costs charged to them by their electricity supplier. A high power factor is generally desirable in a transmission system to reduce transmission losses and improve voltage regulation at the load.
Power factor correction brings the power factor of an AC power circuit closer to 1 by supplying reactive power of opposite sign, adding capacitors or inductors which act to cancel the inductive or capacitive effects of the load, respectively. For example, the inductive effect of motor loads may be offset by locally connected capacitors. If a load had a [[capacitive]] value, inductors (also known as ''reactors'' in this context) are connected to correct the power factor. In the electricity industry, inductors are said to ''consume'' reactive power and capacitors are said to ''supply'' it, even though the reactive power is actually just moving back and forth on each AC cycle.
The reactive elements can create voltage fluctuations and harmonic noise when switched on or off. They will supply or sink reactive power regardless of whether there is a corresponding load operating nearby, increasing the system's no-load losses. In a worst case, reactive elements can interact with the system and with each other to create resonant conditions, resulting in system instability and severe overvoltage fluctuations. As such, reactive elements cannot simply be applied at will, and power factor correction is normally subject to engineering analysis.
[[File:pfcunit.jpg|230px|right|thumb|1. [[Reactive Power Control Relay]]; 2. Network connection points; 3. [[Fuse (electrical)|Slow-blow Fuses]]; 4. Inrush Limiting [[Contactor]]s; 5. [[Capacitor]]s (single-phase or three-phase units, delta-connection); 6. [[Transformer]] Suitable voltage transformation to suit control power (contactors, ventilation,...) ]]
An '''automatic power factor correction unit''' is used to improve power factor. A power factor correction unit usually consists of a number of [[capacitor]]s that are switched by means of [[contactor]]s. These contactors are controlled by a regulator that measures power factor in an electrical network. To be able to measure power factor, the regulator uses a [[current transformer]] to measure the current in one phase.
Depending on the load and power factor of the network, the power factor controller will switch the necessary blocks of capacitors in steps to make sure the power factor stays above a selected value (usually demanded by the energy supplier), say 0.9.
Instead of using a set of switched [[capacitor]]s, an unloaded [[synchronous motor]] can supply reactive power. The [[reactive power]] drawn by the synchronous motor is a function of its field excitation. This is referred to as a ''[[synchronous condenser]]''. It is started and connected to the [[electrical network]]. It operates at full leading power factor and puts [[Volt-amperes reactive|var]]s onto the network as required to support a system’s [[voltage]] or to maintain the system power factor at a specified level.
The condenser’s installation and operation are identical to large [[electric motor]]s. Its principal advantage is the ease with which the amount of correction can be adjusted; it behaves like an electrically variable capacitor. Unlike capacitors, the amount of reactive power supplied is proportional to voltage, not the square of voltage; this improves voltage stability on large networks. Synchronous condensors are often used in connection with [[high voltage direct current]] transmission projects or in large industrial plants such as [[steel mill]]s.
==Non-linear loads==
A non-linear load on a power system is typically a rectifier (such as used in a power supply), or some kind of arc discharge device such as a [[fluorescent lamp]], electric [[welding]] machine, or [[arc furnace]]. Because current in these systems is interrupted by a switching action, the current contains frequency components that are multiples of the power system frequency.
===Non-sinusoidal components===
Non-linear loads change the shape of the current waveform from a [[sine wave]] to some other form. Non-linear loads create [[harmonic]] currents in addition to the original (fundamental frequency) AC current. Addition of linear components such as capacitors and inductors cannot cancel these harmonic currents, so other methods such as filters or '''power factor correction''' (PFC) are required to smooth out their current demand over each cycle of alternating current and so reduce the generated harmonic currents.
In linear circuits having only sinusoidal currents and voltages, the power factor effect arises only from the difference in phase between the current and voltage. This is narrowly known as "displacement power factor". The concept can be generalized to a total, distortion, or true power factor where the apparent power includes all harmonic components. This is of importance in practical power systems which contain [[non-linear]] loads such as [[rectifiers]], some forms of electric lighting, [[electric arc furnace]]s, welding equipment, [[Switched-mode power supply|switched-mode power supplies]] and other devices.
A typical [[multimeter]] will give incorrect results when attempting to measure the AC current drawn by a non-sinusoidal load; the instruments sense the average value of a rectified waveform. The average response is then calibrated to the effective, [[Root mean square|RMS]] value. An RMS sensing multimeter must be used to measure the actual RMS currents and voltages (and therefore apparent power). To measure the real power or reactive power, a [[wattmeter]] designed to properly work with non-sinusoidal currents must be used.
===Switched-mode power supplies===
{{main|switched-mode power supply#power factor}}
A particularly important class of non-linear loads is the millions of personal computers that typically incorporate [[Switched-mode power supply|switched-mode power supplies]] (SMPS) with rated output power ranging from a few watts to more than 1 kW. Historically, these very-low-cost power supplies incorporated a simple full-wave rectifier that conducted only when the mains instantaneous voltage exceeded the voltage on the input capacitors. This leads to very high [[peak-to-average ratio|ratios of peak-to-average]] input current, which also lead to a low [[distortion power factor]] and potentially serious phase and neutral loading concerns.
A typical [[switched-mode power supply]] first makes a DC bus, using a [[bridge rectifier]] or similar circuit. The output voltage is then derived from this DC bus. The problem with this is that the [[rectifier]] is a non-linear device, so the input current is highly non-linear. That means that the input current has energy at [[harmonic]]s of the frequency of the voltage.
This presents a particular problem for the power companies, because they cannot compensate for the harmonic current by adding simple capacitors or inductors, as they could for the reactive power drawn by a linear load. Many jurisdictions are beginning to legally require power factor correction for all power supplies above a certain power level.
Regulatory agencies such as the [[EU]] have set harmonic limits as a method of improving power factor. Declining component cost has hastened implementation of two different methods. To comply with current EU standard EN61000-3-2, all [[Switched-mode power supply|switched-mode power supplies]] with output power more than 75 W must include passive PFC, at least. [[80 PLUS]] power supply certification requires a power factor of 0.9 or more.<ref>[http://www.80plus.org The 80 PLUS Program]</ref>
===Passive PFC===
The simplest way to control the [[harmonic]] current is to use a [[electronic filter|filter]]: it is possible to design a filter that passes current only at line frequency (e.g. 50 or 60 Hz). This filter reduces the harmonic current, which means that the non-linear device now looks like a [[linear]] load. At this point the power factor can be brought to near unity, using capacitors or inductors as required. This filter requires large-value high-current inductors, however, which are bulky and expensive.
A passive PFC requires an inductor larger than the inductor in an active PFC, but costs less.<ref>
[http://www.nuvation.com/corporate/news/newsletter/fall2006/powersupply.html "Power Supply Design Principles ... Part 3"] by Ben Schramm</ref><ref>[http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1187344 "Quasi-active power factor correction with a variable inductive filter: theory, design and practice"] and
[http://www.nuigalway.ie/power_electronics/projects/quasi_active.html "Quasi-active Power Factor Correction: The Role of Variable Inductance"] by Wolfle, W.H.; Hurley, W.G.</ref>
This is a simple way of correcting the nonlinearity of a load by using capacitor banks. It is not as effective as active PFC.<ref>
[http://www.xbitlabs.com/articles/coolers/display/atx-psu5_3.html "ATX Power Supply Units Roundup"]
The power factor is the measure of reactive power. It is the ratio of active power to the total of active and reactive power. It is about 0.65 with an ordinary PSU, but PSUs with active PFC have a power factor of 0.97-0.99. ... hardware reviewers sometimes make no difference between the power factor and the efficiency factor. Although both these terms describe the effectiveness of a power supply, it is a gross mistake to confuse them. ... There is a very small effect from passive PFC – the power factor grows only from 0.65 to 0.7-0.75."
</ref><ref>
[http://findarticles.com/p/articles/mi_m0EIN/is_2006_March_16/ai_n26797888 "The Active PFC Market is Expected to Grow at an Annually Rate of 12.3% Till 2011"]
"Higher-powered products are also likely to use active PFC, since it would be the most cost effective way to bring products into compliance with the EN standard."
</ref><ref>
[http://www.techarp.com/showarticle.aspx?artno=81&pgno=1 TECHarp: "Power Factor Correction"]
"Passive PFC ... the power factor is low at 60-80%. ... Active PFC ... a power factor of up to 95%"
</ref><ref>
[http://www.silverstonetek.com/tech/wh_pfc.php?area= "Why we need PFC in PSU"]
"Normally, the power factor value of electronic device without power factor correction is approximately 0.5. ... Passive PFC ... 70~80% ... Active PFC ... 90~99.9%"
</ref><ref>
[http://www2.electronicproducts.com/PFC_options_for_power_supplies-article-taiyo-mar2004-html.aspx "PFC options for power supplies"]
by Tom Brooks 2004
"The disadvantages of passive PFC techniques are that they typically yield a power factor of only 0.60 to 0.70 ... Dual-stage active PFC technology [yields] a power factor typically greater than 0.98"
</ref>
Passive PFCs are typically more power efficient than active PFCs. A passive PFC on a switching computer PSU has a typical power efficiency of around 96%, while an active PFC has a typical efficiency of about 94%.<ref>
[http://powerelectronics.com/mag/power_boosting_power_supply/ "Comparison between passive and active PFC solutions for a 250-W ATX application."]
</ref>
===Active PFC===
An '''active power factor corrector''' (active PFC) is a [[Power electronics|power electronic]] system that controls the amount of power drawn by a load in order to obtain a power factor as close as possible to unity. In most applications, the active PFC controls the input current of the load so that the current waveform is proportional to the mains voltage waveform (a sine wave).
Some types of active PFC are:
* [[Boost converter|Boost]]
* [[Buck converter|Buck]]
* [[Buck-boost converter|Buck-boost]]
Active power factor correctors can be single-stage or multi-stage.
In the case of a switched-mode power supply, a [[boost converter]] is inserted between the bridge rectifier and the main input capacitors. The boost converter attempts to maintain a constant DC bus voltage on its output while drawing a current that is always in phase with and at the same frequency as the line voltage. Another switchmode converter inside the power supply produces the desired output voltage from the DC bus. This approach requires additional semiconductor switches and control electronics, but permits cheaper and smaller passive components. It is frequently used in practice. For example, [[Switched-mode power supply|SMPS]] with passive PFC can achieve power factor of about 0.7–0.75, SMPS with active PFC, up to 0.99 power factor, while a SMPS without any power factor correction has a power factor of only about 0.55–0.65{{Fact|date=September 2008}}. Due to their very wide input voltage range, many power supplies with active PFC can automatically adjust to operate on AC power from about 100 V (Japan) to 230 V (Europe). That feature is particularly welcome in power supplies for laptops.
==Importance of power factor in distribution systems==
The significance of power factor lies in the fact that utility companies supply customers with [[volt-ampere]]s, but bill them for [[watt]]s. Power factors below 1.0
require a utility to generate more than the minimum volt-amperes necessary to supply the real power (watts). This increases generation and transmission costs. For example, if the load power factor were as low as 0.7, the apparent power would be 1.4 times the real power used by the load. Line current in the circuit would also be 1.4 times the current required at 1.0 power factor, so the losses in the circuit would be doubled (since they are proportional to the square of the current). Alternatively all components of the system such as generators, conductors, transformers, and switchgear would be increased in size (and cost) to carry the extra current.
Utilities typically charge additional costs to customers who have a power factor below some limit, which is typically 0.9 to 0.95. Engineers are often interested in the power factor of a load as one of the factors that affect the efficiency of power transmission.
==Measuring power factor==
Power factor in a single-phase circuit (or balanced three-phase circuit) can be measured with the wattmeter-ammeter-voltmeter method, where the power in watts is divided by the product of measured voltage and current. The power factor of a balanced polyphase circuit is the same as that of any phase. The power factor of an unbalanced polyphase circuit is not uniquely defined.
A direct reading power factor meter can be made with a [[moving coil meter]] of the electrodynamic type, carrying two perpendicular coils on the moving part of the instrument. The field of the instrument is energized by the circuit current flow. The two moving coils, A and B, are connected in parallel with the circuit load. One coil, A, will be connected through a resistor and the second coil, B, through an inductor, so that the current in coil B is delayed with respect to current in A. At unity power factor, the current in A is in phase with the circuit current, and coil A provides maximum torque, driving the instrument pointer toward the 1.0 mark on the scale. At zero power factor, the current in coil B is in phase with circuit current, and coil B provides torque to drive the pointer towards 0. At intermediate values of power factor, the torques provided by the two coils add and the pointer takes up intermediate positions.<ref> [[Donald G. Fink]] and H. Wayne Beaty, Standard Handbook for Electrical Engineers, Eleventh Edition,McGraw-Hill, New York, 1978, ISBN 0-07020974-X page 3-29 paragraph 80 </ref>
Another electromechanical instrument is the polarized-vane type.<ref> Meter and Instrument Department, ''Manual of Electric Instruments Construction and Operating Principles, Manual GET-1087A'',General Electric Company, Schenectady, New York, 1949 pp. 66-68 </ref> In this instrument a stationary field coil produces a rotating magnetic field, just like a polyphase motor. The field coils are connected either directly to polyphase voltage sources or to a phase-shifting reactor if a single-phase application. A second stationary field coil, perpendicular to the voltage coils, carries a current proportional to current in one phase of the circuit. The moving system of the instrument consists of two vanes which are magnetized by the current coil. In operation the moving vanes take up a physical angle equivalent to the electrical angle between the voltage source and the current source. This type of instrument can be made to register for currents in both directions, giving a 4-quadrant display of power factor or phase angle.
Digital instruments can be made that either directly measure the time lag between voltage and current waveforms and so calculate the power factor, or by measuring both true and apparent power in the circuit and calculating the quotient. The first method is only accurate if voltage and current are sinusoidal; loads such as rectifiers distort the waveforms from the sinusoidal shape.
==Mnemonics==
English-language power engineering students are advised to remember:
"ELI the ICE man" or "ELI on ICE" – the voltage E leads the current I in an inductor L, the current leads the voltage in a capacitor C.
Or even shorter:
CIVIL – in a <big>'''C'''</big>apacitor the <big>'''I'''</big> (current) leads <big>'''V'''</big>oltage, <big>'''V'''</big>oltage leads <big>'''I'''</big> (current) in an inductor <big>'''L'''</big>.
==References==
* http://powersave3400.com/Power_Save_Light_Manager.html
<references/>
==External links==
* [http://www.pscpower.com/Whitepapers/What%20is%20Power%20Factor.pdf Power Factor Correction Whitepaper]
* [http://www.ibiblio.org/obp/electricCircuits/AC/AC_11.html Lessons In Electric Circuits - POWER FACTOR]
* [http://www.onsemi.com/pub/Collateral/HBD853-D.PDF ON Semiconductor Power Factor Correction Handbook]
* [http://www1.eere.energy.gov/industry/bestpractices/pdfs/mc60405.pdf An easier-to-understand explanation of power factor and efficiency]
* [http://www.naacenergy.com/power-factor-correction.html Power Factor Correction Compensator and tools]
[[Category:Electrical parameters]]
[[Category:Electric power]]
[[Category:Electrical engineering]]
[[ar:معامل القدرة]]
[[bg:Фактор на мощността]]
[[cs:Účiník]]
[[de:Leistungsfaktor]]
[[es:Factor de potencia]]
[[fa:ضریب توان]]
[[fr:Facteur de puissance]]
[[hi:शक्ति गुणांक]]
[[it:Fattore di potenza]]
[[lv:Jaudas koeficients]]
[[nl:Arbeidsfactor]]
[[ja:力率]]
[[pl:Współczynnik mocy]]
[[pt:Fator de potência]]
[[ru:Коэффициент мощности]]
[[sk:Účinník]]
[[su:Faktor daya]]
[[fi:Tehokerroin]]' |
New page wikitext, after the edit (new_wikitext ) | 'The '''power factor''' of an [[alternating current|AC]] electric power system is defined as the [[ratio]] of the [[AC power#Real, reactive, and apparent power|real power]] flowing to the load to the [[AC power#Real, reactive, and apparent power|apparent power]],<ref> ''IEEE Std. 100 Authoritative Dictionary of Standards Terms, 7th edition''ISBN 0-7381 -2601 -2</ref><ref> IEEE Std. 1459 says (Note 1, section 3.1.1.1) real power only flows to the load and can never be negative </ref> and is a number between 0 and 1 (frequently expressed as a percentage, e.g. 0.5 pf = 50% pf). Real [[Power (physics)|power]] is the capacity of the circuit for performing work in a particular time. Apparent power is the product of the current and voltage of the circuit. Due to energy stored in the load and returned to the source, or due to a non-linear load that distorts the wave shape of the current drawn from the source, the apparent power can be greater than the real power.
In an electric power system, a load with low power factor draws more current than a load with a high power factor for the same amount of useful power transferred. The higher currents increase the energy lost in the distribution system, and require larger wires and other equipment. Because of the costs of larger equipment and wasted energy, electrical utilities will usually charge a higher cost to industrial or commercial customers where there is a low power factor.
Linear loads with low power factor (such as [[induction motor]]s) can be corrected with a passive network of [[capacitor]]s or [[inductor]]s. Non-linear loads, such as [[rectifier]]s, distort the current drawn from the system. In such cases, active or passive power factor correction may be used to counteract the distortion and raise power factor. The devices for correction of power factor may be at a central substation, or spread out over a distribution system, or built into power-consuming equipment.
==Power factor in linear circuit==
[[File:Power factor 1.svg|right|thumb|300px|Instantaneous and average power calculated from AC voltage and current with a unity power factor ({{phisymbol}}=0, cos{{phisymbol}}=1)]]
[[File:Power factor 0.svg|right|thumb|300px|Instantaneous and average power calculated from AC voltage and current with a zero power factor ({{phisymbol}}=90, cos{{phisymbol}}=0)]]
[[File:Power factor 0.7.svg|right|thumb|300px|Instantaneous and average power calculated from AC voltage and current with a lagging power factor ({{phisymbol}}=45, cos{{phisymbol}}=0.71)]]
In a purely resistive AC circuit, voltage and current waveforms are in step (or in phase), changing polarity at the same instant in each cycle. Where [[Reactance (electronics)|reactive]] loads are present, such as with [[capacitor]]s or [[inductor]]s, energy storage in the loads result in a time difference between the current and voltage waveforms. This stored energy returns to the source and is not available to do work at the load. Thus, a circuit with a low power factor will use higher currents to transfer a given quantity of real power than a circuit with a high power factor. A linear load does not change the shape of the waveform of the current, but may change the relative timing (phase) between voltage and current.
Circuits containing purely resistive heating elements (filament lamps, strip heaters, cooking stoves, etc.) have a power factor of 1.0. Circuits containing inductive or capacitive elements (electric motors, [[solenoid]] valves, [[Electrical ballast|lamp ballasts]], and others ) often have a power factor below 1.0.
===Definition and calculation===
AC power flow has the three components: real power (P), measured in [[watt]]s (W); apparent power (S), measured in volt-amperes (VA); and reactive power (Q), measured in reactive volt-amperes (var).
The power factor is defined as:
:<math>\frac{P}{S}</math>.
(λ=P/S)
In the case of a perfectly [[Sine wave|sinusoidal]] waveform, P, Q and S can be expressed as vectors that form a [[vector (geometry)|vector]] triangle such that:
:<math>S^2\,\! = {P^2\,\!} + {Q^2\,\!}.</math>
If <math>\phi</math> is the [[phase angle]] between the current and voltage, then the power factor is equal to <math>\left|\cos\phi\right|</math>, and:
:<math> P = S \left|\cos\phi\right|. </math>
Since the units are consistent, the power factor is by definition a [[dimensionless number]] between 0 and 1. When power factor is equal to 0, the energy flow is entirely reactive, and stored energy in the load returns to the source on each cycle. When the power factor is 1, all the energy supplied by the source is consumed by the load. Power factors are usually stated as "leading" or "lagging" to show the sign of the phase angle.
If a purely resistive load is connected to a power supply, current and voltage will change polarity in step, the power factor will be unity (1), and the electrical energy flows in a single direction across the network in each cycle. Inductive loads such as transformers and motors (any type of wound coil) consume reactive power with current waveform lagging the voltage. Capacitive loads such as capacitor banks or buried cable generate reactive power with current phase leading the voltage. Both types of loads will absorb energy during part of the AC cycle, which is stored in the device's magnetic or electric field, only to return this energy back to the source during the rest of the cycle.
For example, to get 1 kW of real power, if the power factor is unity, 1 kVA of apparent power needs to be transferred (1 kW ÷ 1 = 1 kVA). At low values of power factor, more apparent power needs to be transferred to get the same real power. To get 1 kW of real power at 0.2 power factor, 5 kVA of apparent power needs to be transferred (1 kW ÷ 0.2 = 5 kVA). This apparent power must be produced and transmitted to the load in the conventional fashion, and is subject to the usual distributed losses in the production and transmission processes.
===Linear loads===
Electrical loads consuming [[AC power|alternating current power]] consume both real power and reactive power. The vector sum of real and reactive power is the apparent power. The presence of reactive power causes the real power to be less than the apparent power, and so, the electric load has a power factor of less than 1.
===Power factor correction of linear loads===
It is often desirable to adjust the power factor of a system to near 1.0. This ''power factor correction'' (PFC) is achieved by switching in or out banks of [[inductor]]s or [[capacitor]]s. For example the inductive effect of motor loads may be offset by locally connected capacitors. When reactive elements supply or absorb reactive power near the load, the apparent power is reduced.
Power factor correction may be applied by an [[electrical power transmission]] utility to improve the stability and efficiency of the transmission network. Correction equipment may be installed by individual electrical customers to reduce the costs charged to them by their electricity supplier. A high power factor is generally desirable in a transmission system to reduce transmission losses and improve voltage regulation at the load.
Power factor correction brings the power factor of an AC power circuit closer to 1 by supplying reactive power of opposite sign, adding capacitors or inductors which act to cancel the inductive or capacitive effects of the load, respectively. For example, the inductive effect of motor loads may be offset by locally connected capacitors. If a load had a [[capacitive]] value, inductors (also known as ''reactors'' in this context) are connected to correct the power factor. In the electricity industry, inductors are said to ''consume'' reactive power and capacitors are said to ''supply'' it, even though the reactive power is actually just moving back and forth on each AC cycle.
The reactive elements can create voltage fluctuations and harmonic noise when switched on or off. They will supply or sink reactive power regardless of whether there is a corresponding load operating nearby, increasing the system's no-load losses. In a worst case, reactive elements can interact with the system and with each other to create resonant conditions, resulting in system instability and severe overvoltage fluctuations. As such, reactive elements cannot simply be applied at will, and power factor correction is normally subject to engineering analysis.
[[File:pfcunit.jpg|230px|right|thumb|1. [[Reactive Power Control Relay]]; 2. Network connection points; 3. [[Fuse (electrical)|Slow-blow Fuses]]; 4. Inrush Limiting [[Contactor]]s; 5. [[Capacitor]]s (single-phase or three-phase units, delta-connection); 6. [[Transformer]] Suitable voltage transformation to suit control power (contactors, ventilation,...) ]]
An '''automatic power factor correction unit''' is used to improve power factor. A power factor correction unit usually consists of a number of [[capacitor]]s that are switched by means of [[contactor]]s. These contactors are controlled by a regulator that measures power factor in an electrical network. To be able to measure power factor, the regulator uses a [[current transformer]] to measure the current in one phase.
Depending on the load and power factor of the network, the power factor controller will switch the necessary blocks of capacitors in steps to make sure the power factor stays above a selected value (usually demanded by the energy supplier), say 0.9.
Instead of using a set of switched [[capacitor]]s, an unloaded [[synchronous motor]] can supply reactive power. The [[reactive power]] drawn by the synchronous motor is a function of its field excitation. This is referred to as a ''[[synchronous condenser]]''. It is started and connected to the [[electrical network]]. It operates at full leading power factor and puts [[Volt-amperes reactive|var]]s onto the network as required to support a system’s [[voltage]] or to maintain the system power factor at a specified level.
The condenser’s installation and operation are identical to large [[electric motor]]s. Its principal advantage is the ease with which the amount of correction can be adjusted; it behaves like an electrically variable capacitor. Unlike capacitors, the amount of reactive power supplied is proportional to voltage, not the square of voltage; this improves voltage stability on large networks. Synchronous condensors are often used in connection with [[high voltage direct current]] transmission projects or in large industrial plants such as [[steel mill]]s.
==Non-linear loads==
A non-linear load on a power system is typically a rectifier (such as used in a power supply), or some kind of arc discharge device such as a [[fluorescent lamp]], electric [[welding]] machine, or [[arc furnace]]. Because current in these systems is interrupted by a switching action, the current contains frequency components that are multiples of the power system frequency.
===Non-sinusoidal components===
Non-linear loads change the shape of the current waveform from a [[sine wave]] to some other form. Non-linear loads create [[harmonic]] currents in addition to the original (fundamental frequency) AC current. Addition of linear components such as capacitors and inductors cannot cancel these harmonic currents, so other methods such as filters or '''power factor correction''' (PFC) are required to smooth out their current demand over each cycle of alternating current and so reduce the generated harmonic currents.
In linear circuits having only sinusoidal currents and voltages, the power factor effect arises only from the difference in phase between the current and voltage. This is narrowly known as "displacement power factor". The concept can be generalized to a total, distortion, or true power factor where the apparent power includes all harmonic components. This is of importance in practical power systems which contain [[non-linear]] loads such as [[rectifiers]], some forms of electric lighting, [[electric arc furnace]]s, welding equipment, [[Switched-mode power supply|switched-mode power supplies]] and other devices.
A typical [[multimeter]] will give incorrect results when attempting to measure the AC current drawn by a non-sinusoidal load; the instruments sense the average value of a rectified waveform. The average response is then calibrated to the effective, [[Root mean square|RMS]] value. An RMS sensing multimeter must be used to measure the actual RMS currents and voltages (and therefore apparent power). To measure the real power or reactive power, a [[wattmeter]] designed to properly work with non-sinusoidal currents must be used.
===Switched-mode power supplies===
{{main|switched-mode power supply#power factor}}
A particularly important class of non-linear loads is the millions of personal computers that typically incorporate [[Switched-mode power supply|switched-mode power supplies]] (SMPS) with rated output power ranging from a few watts to more than 1 kW. Historically, these very-low-cost power supplies incorporated a simple full-wave rectifier that conducted only when the mains instantaneous voltage exceeded the voltage on the input capacitors. This leads to very high [[peak-to-average ratio|ratios of peak-to-average]] input current, which also lead to a low [[distortion power factor]] and potentially serious phase and neutral loading concerns.
A typical [[switched-mode power supply]] first makes a DC bus, using a [[bridge rectifier]] or similar circuit. The output voltage is then derived from this DC bus. The problem with this is that the [[rectifier]] is a non-linear device, so the input current is highly non-linear. That means that the input current has energy at [[harmonic]]s of the frequency of the voltage.
This presents a particular problem for the power companies, because they cannot compensate for the harmonic current by adding simple capacitors or inductors, as they could for the reactive power drawn by a linear load. Many jurisdictions are beginning to legally require power factor correction for all power supplies above a certain power level.
Regulatory agencies such as the [[EU]] have set harmonic limits as a method of improving power factor. Declining component cost has hastened implementation of two different methods. To comply with current EU standard EN61000-3-2, all [[Switched-mode power supply|switched-mode power supplies]] with output power more than 75 W must include passive PFC, at least. [[80 PLUS]] power supply certification requires a power factor of 0.9 or more.<ref>[http://www.80plus.org The 80 PLUS Program]</ref>
===Passive PFC===
The simplest way to control the [[harmonic]] current is to use a [[electronic filter|filter]]: it is possible to design a filter that passes current only at line frequency (e.g. 50 or 60 Hz). This filter reduces the harmonic current, which means that the non-linear device now looks like a [[linear]] load. At this point the power factor can be brought to near unity, using capacitors or inductors as required. This filter requires large-value high-current inductors, however, which are bulky and expensive.
A passive PFC requires an inductor larger than the inductor in an active PFC, but costs less.<ref>
[http://www.nuvation.com/corporate/news/newsletter/fall2006/powersupply.html "Power Supply Design Principles ... Part 3"] by Ben Schramm</ref><ref>[http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1187344 "Quasi-active power factor correction with a variable inductive filter: theory, design and practice"] and
[http://www.nuigalway.ie/power_electronics/projects/quasi_active.html "Quasi-active Power Factor Correction: The Role of Variable Inductance"] by Wolfle, W.H.; Hurley, W.G.</ref>
This is a simple way of correcting the nonlinearity of a load by using capacitor banks. It is not as effective as active PFC.<ref>
[http://www.xbitlabs.com/articles/coolers/display/atx-psu5_3.html "ATX Power Supply Units Roundup"]
The power factor is the measure of reactive power. It is the ratio of active power to the total of active and reactive power. It is about 0.65 with an ordinary PSU, but PSUs with active PFC have a power factor of 0.97-0.99. ... hardware reviewers sometimes make no difference between the power factor and the efficiency factor. Although both these terms describe the effectiveness of a power supply, it is a gross mistake to confuse them. ... There is a very small effect from passive PFC – the power factor grows only from 0.65 to 0.7-0.75."
</ref><ref>
[http://findarticles.com/p/articles/mi_m0EIN/is_2006_March_16/ai_n26797888 "The Active PFC Market is Expected to Grow at an Annually Rate of 12.3% Till 2011"]
"Higher-powered products are also likely to use active PFC, since it would be the most cost effective way to bring products into compliance with the EN standard."
</ref><ref>
[http://www.techarp.com/showarticle.aspx?artno=81&pgno=1 TECHarp: "Power Factor Correction"]
"Passive PFC ... the power factor is low at 60-80%. ... Active PFC ... a power factor of up to 95%"
</ref><ref>
[http://www.silverstonetek.com/tech/wh_pfc.php?area= "Why we need PFC in PSU"]
"Normally, the power factor value of electronic device without power factor correction is approximately 0.5. ... Passive PFC ... 70~80% ... Active PFC ... 90~99.9%"
</ref><ref>
[http://www2.electronicproducts.com/PFC_options_for_power_supplies-article-taiyo-mar2004-html.aspx "PFC options for power supplies"]
by Tom Brooks 2004
"The disadvantages of passive PFC techniques are that they typically yield a power factor of only 0.60 to 0.70 ... Dual-stage active PFC technology [yields] a power factor typically greater than 0.98"
</ref>
Passive PFCs are typically more power efficient than active PFCs. A passive PFC on a switching computer PSU has a typical power efficiency of around 96%, while an active PFC has a typical efficiency of about 94%.<ref>
[http://powerelectronics.com/mag/power_boosting_power_supply/ "Comparison between passive and active PFC solutions for a 250-W ATX application."]
</ref>
===Active PFC===
An '''active power factor corrector''' (active PFC) is a [[Power electronics|power electronic]] system that controls the amount of power drawn by a load in order to obtain a power factor as close as possible to unity. In most applications, the active PFC controls the input current of the load so that the current waveform is proportional to the mains voltage waveform (a sine wave).
Some types of active PFC are:
* [[Boost converter|Boost]]
* [[Buck converter|Buck]]
* [[Buck-boost converter|Buck-boost]]
Active power factor correctors can be single-stage or multi-stage.
In the case of a switched-mode power supply, a [[boost converter]] is inserted between the bridge rectifier and the main input capacitors. The boost converter attempts to maintain a constant DC bus voltage on its output while drawing a current that is always in phase with and at the same frequency as the line voltage. Another switchmode converter inside the power supply produces the desired output voltage from the DC bus. This approach requires additional semiconductor switches and control electronics, but permits cheaper and smaller passive components. It is frequently used in practice. For example, [[Switched-mode power supply|SMPS]] with passive PFC can achieve power factor of about 0.7–0.75, SMPS with active PFC, up to 0.99 power factor, while a SMPS without any power factor correction has a power factor of only about 0.55–0.65{{Fact|date=September 2008}}. Due to their very wide input voltage range, many power supplies with active PFC can automatically adjust to operate on AC power from about 100 V (Japan) to 230 V (Europe). That feature is particularly welcome in power supplies for laptops.
==Importance of power factor in distribution systems==
The significance of power factor lies in the fact that utility companies supply customers with [[volt-ampere]]s, but bill them for [[watt]]s. Power factors below 1.0
require a utility to generate more than the minimum volt-amperes necessary to supply the real power (watts). This increases generation and transmission costs. For example, if the load power factor were as low as 0.7, the apparent power would be 1.4 times the real power used by the load. Line current in the circuit would also be 1.4 times the current required at 1.0 power factor, so the losses in the circuit would be doubled (since they are proportional to the square of the current). Alternatively all components of the system such as generators, conductors, transformers, and switchgear would be increased in size (and cost) to carry the extra current.
Utilities typically charge additional costs to customers who have a power factor below some limit, which is typically 0.9 to 0.95. Engineers are often interested in the power factor of a load as one of the factors that affect the efficiency of power transmission.
==Measuring power factor==
Power factor in a single-phase circuit (or balanced three-phase circuit) can be measured with the wattmeter-ammeter-voltmeter method, where the power in watts is divided by the product of measured voltage and current. The power factor of a balanced polyphase circuit is the same as that of any phase. The power factor of an unbalanced polyphase circuit is not uniquely defined.
A direct reading power factor meter can be made with a [[moving coil meter]] of the electrodynamic type, carrying two perpendicular coils on the moving part of the instrument. The field of the instrument is energized by the circuit current flow. The two moving coils, A and B, are connected in parallel with the circuit load. One coil, A, will be connected through a resistor and the second coil, B, through an inductor, so that the current in coil B is delayed with respect to current in A. At unity power factor, the current in A is in phase with the circuit current, and coil A provides maximum torque, driving the instrument pointer toward the 1.0 mark on the scale. At zero power factor, the current in coil B is in phase with circuit current, and coil B provides torque to drive the pointer towards 0. At intermediate values of power factor, the torques provided by the two coils add and the pointer takes up intermediate positions.<ref> [[Donald G. Fink]] and H. Wayne Beaty, Standard Handbook for Electrical Engineers, Eleventh Edition,McGraw-Hill, New York, 1978, ISBN 0-07020974-X page 3-29 paragraph 80 </ref>
Another electromechanical instrument is the polarized-vane type.<ref> Meter and Instrument Department, ''Manual of Electric Instruments Construction and Operating Principles, Manual GET-1087A'',General Electric Company, Schenectady, New York, 1949 pp. 66-68 </ref> In this instrument a stationary field coil produces a rotating magnetic field, just like a polyphase motor. The field coils are connected either directly to polyphase voltage sources or to a phase-shifting reactor if a single-phase application. A second stationary field coil, perpendicular to the voltage coils, carries a current proportional to current in one phase of the circuit. The moving system of the instrument consists of two vanes which are magnetized by the current coil. In operation the moving vanes take up a physical angle equivalent to the electrical angle between the voltage source and the current source. This type of instrument can be made to register for currents in both directions, giving a 4-quadrant display of power factor or phase angle.
Digital instruments can be made that either directly measure the time lag between voltage and current waveforms and so calculate the power factor, or by measuring both true and apparent power in the circuit and calculating the quotient. The first method is only accurate if voltage and current are sinusoidal; loads such as rectifiers distort the waveforms from the sinusoidal shape.
==Mnemonics==
English-language power engineering students are advised to remember:
"ELI the ICE man" or "ELI on ICE" – the voltage E leads the current I in an inductor L, the current leads the voltage in a capacitor C.
Or even shorter:
CIVIL – in a <big>'''C'''</big>apacitor the <big>'''I'''</big> (current) leads <big>'''V'''</big>oltage, <big>'''V'''</big>oltage leads <big>'''I'''</big> (current) in an inductor <big>'''L'''</big>.
==External links==
* [http://www.pscpower.com/Whitepapers/What%20is%20Power%20Factor.pdf Power Factor Correction Whitepaper]
* [http://www.ibiblio.org/obp/electricCircuits/AC/AC_11.html Lessons In Electric Circuits - POWER FACTOR]
* [http://www.onsemi.com/pub/Collateral/HBD853-D.PDF ON Semiconductor Power Factor Correction Handbook]
* [http://www1.eere.energy.gov/industry/bestpractices/pdfs/mc60405.pdf An easier-to-understand explanation of power factor and efficiency]
* [http://www.naacenergy.com/power-factor-correction.html Power Factor Correction Compensator and tools]
[[Category:Electrical parameters]]
[[Category:Electric power]]
[[Category:Electrical engineering]]
[[ar:معامل القدرة]]
[[bg:Фактор на мощността]]
[[cs:Účiník]]
[[de:Leistungsfaktor]]
[[es:Factor de potencia]]
[[fa:ضریب توان]]
[[fr:Facteur de puissance]]
[[hi:शक्ति गुणांक]]
[[it:Fattore di potenza]]
[[lv:Jaudas koeficients]]
[[nl:Arbeidsfactor]]
[[ja:力率]]
[[pl:Współczynnik mocy]]
[[pt:Fator de potência]]
[[ru:Коэффициент мощности]]
[[sk:Účinník]]
[[su:Faktor daya]]
[[fi:Tehokerroin]]' |