Misplaced Pages

Statistical distance

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Distance between two statistical objects
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (February 2012) (Learn how and when to remove this message)
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Statistical distance" – news · newspapers · books · scholar · JSTOR (December 2020) (Learn how and when to remove this message)
(Learn how and when to remove this message)

In statistics, probability theory, and information theory, a statistical distance quantifies the distance between two statistical objects, which can be two random variables, or two probability distributions or samples, or the distance can be between an individual sample point and a population or a wider sample of points.

A distance between populations can be interpreted as measuring the distance between two probability distributions and hence they are essentially measures of distances between probability measures. Where statistical distance measures relate to the differences between random variables, these may have statistical dependence, and hence these distances are not directly related to measures of distances between probability measures. Again, a measure of distance between random variables may relate to the extent of dependence between them, rather than to their individual values.

Many statistical distance measures are not metrics, and some are not symmetric. Some types of distance measures, which generalize squared distance, are referred to as (statistical) divergences.

Terminology

Many terms are used to refer to various notions of distance; these are often confusingly similar, and may be used inconsistently between authors and over time, either loosely or with precise technical meaning. In addition to "distance", similar terms include deviance, deviation, discrepancy, discrimination, and divergence, as well as others such as contrast function and metric. Terms from information theory include cross entropy, relative entropy, discrimination information, and information gain.

Distances as metrics

Metrics

A metric on a set X is a function (called the distance function or simply distance) d : X × XR (where R is the set of non-negative real numbers). For all x, y, z in X, this function is required to satisfy the following conditions:

  1. d(x, y) ≥ 0     (non-negativity)
  2. d(x, y) = 0   if and only if   x = y     (identity of indiscernibles. Note that condition 1 and 2 together produce positive definiteness)
  3. d(x, y) = d(y, x)     (symmetry)
  4. d(x, z) ≤ d(x, y) + d(y, z)     (subadditivity / triangle inequality).

Generalized metrics

Many statistical distances are not metrics, because they lack one or more properties of proper metrics. For example, pseudometrics violate property (2), identity of indiscernibles; quasimetrics violate property (3), symmetry; and semimetrics violate property (4), the triangle inequality. Statistical distances that satisfy (1) and (2) are referred to as divergences.

Statistically close

The total variation distance of two distributions X {\displaystyle X} and Y {\displaystyle Y} over a finite domain D {\displaystyle D} , (often referred to as statistical difference or statistical distance in cryptography) is defined as

Δ ( X , Y ) = 1 2 α D | Pr [ X = α ] Pr [ Y = α ] | {\displaystyle \Delta (X,Y)={\frac {1}{2}}\sum _{\alpha \in D}|\Pr-\Pr|} .

We say that two probability ensembles { X k } k N {\displaystyle \{X_{k}\}_{k\in \mathbb {N} }} and { Y k } k N {\displaystyle \{Y_{k}\}_{k\in \mathbb {N} }} are statistically close if Δ ( X k , Y k ) {\displaystyle \Delta (X_{k},Y_{k})} is a negligible function in k {\displaystyle k} .

Examples

Metrics

Divergences

See also

Notes

  1. Dodge, Y. (2003)—entry for distance
  2. Goldreich, Oded (2001). Foundations of Cryptography: Basic Tools (1st ed.). Berlin: Cambridge University Press. p. 106. ISBN 0-521-79172-3.
  3. Reyzin, Leo. (Lecture Notes) Extractors and the Leftover Hash Lemma

External links

Statistics
Descriptive statistics
Continuous data
Center
Dispersion
Shape
Count data
Summary tables
Dependence
Graphics
Data collection
Study design
Survey methodology
Controlled experiments
Adaptive designs
Observational studies
Statistical inference
Statistical theory
Frequentist inference
Point estimation
Interval estimation
Testing hypotheses
Parametric tests
Specific tests
Goodness of fit
Rank statistics
Bayesian inference
Correlation
Regression analysis
Linear regression
Non-standard predictors
Generalized linear model
Partition of variance
Categorical / Multivariate / Time-series / Survival analysis
Categorical
Multivariate
Time-series
General
Specific tests
Time domain
Frequency domain
Survival
Survival function
Hazard function
Test
Applications
Biostatistics
Engineering statistics
Social statistics
Spatial statistics

References

Category:
Statistical distance Add topic