Misplaced Pages

Szász–Mirakjan–Kantorovich operator

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In functional analysis, a discipline within mathematics, the Szász–Mirakjan–Kantorovich operators are defined by

[ T n ( f ) ] ( x ) = n e n x k = 0 ( n x ) k k ! k / n ( k + 1 ) / n f ( t ) d t {\displaystyle (x)=ne^{-nx}\sum _{k=0}^{\infty }{{\frac {(nx)^{k}}{k!}}\int _{k/n}^{(k+1)/n}f(t)\,dt}}

where x [ 0 , ) R {\displaystyle x\in [0,\infty )\subset \mathbb {R} } and n N {\displaystyle n\in \mathbb {N} } .

See also

Notes

  1. Walczak, Zbigniew (2002). "On approximation by modified Szasz–Mirakyan operators". Glasnik Matematički. 37 (57): 303–319.

References


Stub icon

This mathematical analysis–related article is a stub. You can help Misplaced Pages by expanding it.

Categories:
Szász–Mirakjan–Kantorovich operator Add topic