Misplaced Pages

TAS1R1

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Protein
TAS1R1
Identifiers
AliasesTAS1R1, GPR70, T1R1, TR1, GM148, taste 1 receptor member 1
External IDsOMIM: 606225; MGI: 1927505; HomoloGene: 12888; GeneCards: TAS1R1; OMA:TAS1R1 - orthologs
Gene location (Human)
Chromosome 1 (human)
Chr.Chromosome 1 (human)
Chromosome 1 (human)Genomic location for TAS1R1Genomic location for TAS1R1
Band1p36.31Start6,555,307 bp
End6,579,755 bp
Gene location (Mouse)
Chromosome 4 (mouse)
Chr.Chromosome 4 (mouse)
Chromosome 4 (mouse)Genomic location for TAS1R1Genomic location for TAS1R1
Band4 E2|4 82.83 cMStart152,112,371 bp
End152,123,025 bp
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • gonad

  • testicle

  • left testis

  • right testis

  • muscle of thigh

  • right adrenal cortex

  • gallbladder

  • gastrocnemius muscle

  • olfactory zone of nasal mucosa

  • Descending thoracic aorta
Top expressed in
  • yolk sac

  • spermatid

  • morula

  • seminiferous tubule

  • blastocyst

  • embryo

  • spermatocyte

  • muscle of thigh

  • dentate gyrus of hippocampal formation granule cell

  • primary visual cortex
More reference expression data
BioGPS
n/a
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

80835

110326

Ensembl

ENSG00000173662

ENSMUSG00000028950

UniProt

Q7RTX1

Q99PG6

RefSeq (mRNA)

NM_138697
NM_177539
NM_177540
NM_177541

NM_031867

RefSeq (protein)

NP_619642
NP_803884

NP_114073

Location (UCSC)Chr 1: 6.56 – 6.58 MbChr 4: 152.11 – 152.12 Mb
PubMed search
Wikidata
View/Edit HumanView/Edit Mouse

Taste receptor type 1 member 1 is a protein that in humans is encoded by the TAS1R1 gene.

Structure

The protein encoded by the TAS1R1 gene is a G protein-coupled receptor with seven trans-membrane domains and is a component of the heterodimeric amino acid taste receptor T1R1+3. This receptor is formed as a dimer of the TAS1R1 and TAS1R3 proteins. Moreover, the TAS1R1 protein is not functional outside of formation of the 1+3 heterodimer. The TAS1R1+3 receptor has been shown to respond to L-amino acids but not to their D-enantiomers or other compounds. This ability to bind L-amino acids, specifically L-glutamine, enables the body to sense the umami, or savory, taste. Multiple transcript variants encoding several different isoforms have been found for this gene, which may account for differing taste thresholds among individuals for the umami taste. Another interesting quality of the TAS1R1 and TAS1R2 proteins is their spontaneous activity in the absence of the extracellular domains and binding ligands. This may mean that the extracellular domain regulates function of the receptor by preventing spontaneous action as well as binding to activating ligands such as L-glutamine.

Ligands

The umami taste is distinctly related to the compound monosodium glutamate (MSG). Synthesized in 1908 by Japanese chemist Kikunae Ikeda, this flavor-enhancing compound led to the naming of a new flavor quality that was named “umami”, the Japanese word for “tasty”. The TAS1R1+3 taste receptor is sensitive to the glutamate in MSG as well as the synergistic taste-enhancer molecules inosine monophosphate (IMP) and guanosine monophosphate (GMP). These taste-enhancer molecules are unable to activate the receptor alone, but are rather used to enhance receptor responses to many L-amino acids.

Signal transduction

TAS1R1 and TAS1R2 receptors have been shown to bind to G proteins, most often the gustducin Gα subunit, although a gustducin knock-out has shown small residual activity. TAS1R1 and TAS1R2 have also been shown to activate Gαo and Gαi. This suggests that TAS1R1 and TAS1R2 are G protein-coupled receptors that inhibit adenylyl cyclases to decrease cyclic guanosine monophosphate (cGMP) levels in taste receptors.

Research done by creating knock-outs of common channels activated by sensory G-protein second messenger systems has also shown a connection between umami taste perception and the phosphatidylinositol (PIP2) pathway. The nonselective cation Transient Receptor Potential channel TRPM5 has been shown to correlate with both umami and sweet taste. Also, the phospholipase PLCβ2 was shown to similarly correlate with umami and sweet taste. This suggests that activation of the G-protein pathway and subsequent activation of PLC β2 and the TRPM5 channel in these taste cells functions to activate the cell.

Location and innervation

TAS1R1+3 expressing cells are found mostly in the fungiform papillae at the tip and edges of the tongue and palate taste receptor cells in the roof of the mouth. These cells are shown to synapse upon the chorda tympani nerves to send their signals to the brain, although some activation of the glossopharyngeal nerve has been found. TAS1R and TAS2R (bitter) channels are not expressed together in taste buds.

See also

References

  1. ^ GRCh38: Ensembl release 89: ENSG00000173662Ensembl, May 2017
  2. ^ GRCm38: Ensembl release 89: ENSMUSG00000028950Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ "Entrez Gene: TAS1R1 taste receptor, type 1, member 1".
  6. ^ Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS (2001). "Mammalian sweet taste receptors". Cell. 106 (3): 381–390. doi:10.1016/S0092-8674(01)00451-2. PMID 11509186. S2CID 11886074.
  7. ^ Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ, Zuker CS (2002). "An amino-acid taste receptor". Nature. 416 (6877): 199–202. Bibcode:2002Natur.416..199N. doi:10.1038/nature726. PMID 11894099. S2CID 1730089.
  8. White BD, Corll CB, Porter JR (1989). "The metabolic clearance rate of corticosterone in lean and obese male Zucker rats". Metabolism: Clinical and Experimental. 38 (6): 530–536. doi:10.1016/0026-0495(89)90212-6. PMID 2725291.
  9. ^ Sainz E, Cavenagh MM, LopezJimenez ND, Gutierrez JC, Battey JF, Northup JK, Sullivan SL (2007). "The G-protein coupling properties of the human sweet and amino acid taste receptors". Developmental Neurobiology. 67 (7): 948–959. doi:10.1002/dneu.20403. PMID 17506496. S2CID 29736077.
  10. Sand, Jordan (2005). "A Short History of MSG: Good Science, Bad Science, and Taste Cultures". Gastronomica: The Journal of Food and Culture. 5 (4). University of California Press: 38–49. doi:10.1525/gfc.2005.5.4.38.
  11. Delay ER, Beaver AJ, Wagner KA, Stapleton JR, Harbaugh JO, Catron KD, Roper SD (2000). "Taste preference synergy between glutamate receptor agonists and inosine monophosphate in rats". Chemical Senses. 25 (5): 507–515. doi:10.1093/chemse/25.5.507. PMID 11015322.
  12. Abaffy T, Trubey KR, Chaudhari N (2003). "Adenylyl cyclase expression and modulation of cAMP in rat taste cells". American Journal of Physiology. Cell Physiology. 284 (6): C1420 – C1428. doi:10.1152/ajpcell.00556.2002. PMID 12606315. S2CID 2704640.
  13. Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu D, Zuker CS, Ryba NJ (2003). "Coding of sweet, bitter, and umami tastes: Different receptor cells sharing similar signaling pathways". Cell. 112 (3): 293–301. doi:10.1016/S0092-8674(03)00071-0. PMID 12581520. S2CID 718601.
  14. Danilova V, Hellekant G (2003). "Comparison of the responses of the chorda tympani and glossopharyngeal nerves to taste stimuli in C57BL/6J mice". BMC Neuroscience. 4: 5–6. doi:10.1186/1471-2202-4-5. PMC 153500. PMID 12617752.

Further reading

External links

Cell surface receptor: G protein-coupled receptors
Class A: Rhodopsin-like
Neurotransmitter
Adrenergic
Purinergic
Serotonin
Other
Metabolites and
signaling molecules
Eicosanoid
Other
Peptide
Neuropeptide
Other
Miscellaneous
Taste, bitter
Orphan
Other
Class B: Secretin-like
Adhesion
Orphan
Other
Class C: Metabotropic glutamate / pheromone
Taste, sweet
Other
Class F: Frizzled & Smoothened
Frizzled
Smoothened

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

Categories:
TAS1R1 Add topic