Misplaced Pages

Tsirelson's stochastic differential equation

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Tsirelson's stochastic differential equation (also Tsirelson's drift or Tsirelson's equation) is a stochastic differential equation which has a weak solution but no strong solution. It is therefore a counter-example and named after its discoverer Boris Tsirelson. Tsirelson's equation is of the form

d X t = a [ t , ( X s , s t ) ] d t + d W t , X 0 = 0 , {\displaystyle dX_{t}=adt+dW_{t},\quad X_{0}=0,}

where W t {\displaystyle W_{t}} is the one-dimensional Brownian motion. Tsirelson chose the drift a {\displaystyle a} to be a bounded measurable function that depends on the past times of X {\displaystyle X} but is independent of the natural filtration F W {\displaystyle {\mathcal {F}}^{W}} of the Brownian motion. This gives a weak solution, but since the process X {\displaystyle X} is not F W {\displaystyle {\mathcal {F}}_{\infty }^{W}} -measurable, not a strong solution.

Tsirelson's Drift

Let

  • F t W = σ ( W s : 0 s t ) {\displaystyle {\mathcal {F}}_{t}^{W}=\sigma (W_{s}:0\leq s\leq t)} and { F t W } t R + {\displaystyle \{{\mathcal {F}}_{t}^{W}\}_{t\in \mathbb {R} _{+}}} be the natural Brownian filtration that satisfies the usual conditions,
  • t 0 = 1 {\displaystyle t_{0}=1} and ( t n ) n N {\displaystyle (t_{n})_{n\in -\mathbb {N} }} be a descending sequence t 0 > t 1 > t 2 > , {\displaystyle t_{0}>t_{-1}>t_{-2}>\dots ,} such that lim n t n = 0 {\displaystyle \lim _{n\to -\infty }t_{n}=0} ,
  • Δ X t n = X t n X t n 1 {\displaystyle \Delta X_{t_{n}}=X_{t_{n}}-X_{t_{n-1}}} and Δ t n = t n t n 1 {\displaystyle \Delta t_{n}=t_{n}-t_{n-1}} ,
  • { x } = x x {\displaystyle \{x\}=x-\lfloor x\rfloor } be the decimal part.

Tsirelson now defined the following drift

a [ t , ( X s , s t ) ] = n N { Δ X t n Δ t n } 1 ( t n , t n + 1 ] ( t ) . {\displaystyle a=\sum \limits _{n\in -\mathbb {N} }{\bigg \{}{\frac {\Delta X_{t_{n}}}{\Delta t_{n}}}{\bigg \}}1_{(t_{n},t_{n+1}]}(t).}

Let the expression

η n = ξ n + { η n 1 } {\displaystyle \eta _{n}=\xi _{n}+\{\eta _{n-1}\}}

be the abbreviation for

Δ X t n + 1 Δ t n + 1 = Δ W t n + 1 Δ t n + 1 + { Δ X t n Δ t n } . {\displaystyle {\frac {\Delta X_{t_{n+1}}}{\Delta t_{n+1}}}={\frac {\Delta W_{t_{n+1}}}{\Delta t_{n+1}}}+{\bigg \{}{\frac {\Delta X_{t_{n}}}{\Delta t_{n}}}{\bigg \}}.}

Theorem

According to a theorem by Tsirelson and Yor:

1) The natural filtration of X {\displaystyle X} has the following decomposition

F t X = F t W σ ( { η n 1 } ) , t 0 , t n t {\displaystyle {\mathcal {F}}_{t}^{X}={\mathcal {F}}_{t}^{W}\vee \sigma {\big (}\{\eta _{n-1}\}{\big )},\quad \forall t\geq 0,\quad \forall t_{n}\leq t}

2) For each n N {\displaystyle n\in -\mathbb {N} } the { η n } {\displaystyle \{\eta _{n}\}} are uniformly distributed on [ 0 , 1 ) {\displaystyle [0,1)} and independent of ( W t ) t 0 {\displaystyle (W_{t})_{t\geq 0}} resp. F W {\displaystyle {\mathcal {F}}_{\infty }^{W}} .

3) F 0 + X {\displaystyle {\mathcal {F}}_{0+}^{X}} is the P {\displaystyle P} -trivial σ-algebra, i.e. all events have probability 0 {\displaystyle 0} or 1 {\displaystyle 1} .

Literature

  • Rogers, L. C. G.; Williams, David (2000). Diffusions, Markov Processes and Martingales: Volume 2, Itô Calculus. United Kingdom: Cambridge University Press. pp. 155–156.

References

  1. Tsirel'son, Boris S. (1975). "An Example of a Stochastic Differential Equation Having No Strong Solution". Theory of Probability & Its Applications. 20 (2): 427–430. doi:10.1137/1120049.
  2. Rogers, L. C. G.; Williams, David (2000). Diffusions, Markov Processes and Martingales: Volume 2, Itô Calculus. United Kingdom: Cambridge University Press. p. 156.
  3. Yano, Kouji; Yor, Marc (2010). "Around Tsirelson's equation, or: The evolution process may not explain everything". Probability Surveys. 12: 1–12. arXiv:0906.3442. doi:10.1214/15-PS256.
Categories:
Tsirelson's stochastic differential equation Add topic