Misplaced Pages

Twisted sheaf

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics, a twisted sheaf is a variant of a coherent sheaf. Precisely, it is specified by: an open covering in the étale topology Ui, coherent sheaves Fi over Ui, a Čech 2-cocycle θ for G m {\displaystyle \mathbb {G} _{m}} on the covering Ui as well as the isomorphisms

g i j : F j | U i j F i | U i j {\displaystyle g_{ij}:F_{j}|_{U_{ij}}{\overset {\sim }{\to }}F_{i}|_{U_{ij}}}

satisfying

  • g i i = id F i {\displaystyle g_{ii}=\operatorname {id} _{F_{i}}} ,
  • g i j = g j i 1 , {\displaystyle g_{ij}=g_{ji}^{-1},}
  • g i j g j k g k i = θ i j k id F i . {\displaystyle g_{ij}\circ g_{jk}\circ g_{ki}=\theta _{ijk}\operatorname {id} _{F_{i}}.}

The notion of twisted sheaves was introduced by Jean Giraud. The above definition due to Căldăraru is down-to-earth but is equivalent to a more sophisticated definition in terms of gerbe; see § 2.1.3 of (Lieblich 2007).

See also

References


Stub icon

This algebraic geometry–related article is a stub. You can help Misplaced Pages by expanding it.

Categories:
Twisted sheaf Add topic