Misplaced Pages

Young's modulus

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Young’s modulus) Mechanical property that measures stiffness of a solid material

Young's modulus is the slope of the linear part of the stress–strain curve for a material under tension or compression.

Young's modulus (or Young modulus) is a mechanical property of solid materials that measures the tensile or compressive stiffness when the force is applied lengthwise. It is the modulus of elasticity for tension or axial compression. Young's modulus is defined as the ratio of the stress (force per unit area) applied to the object and the resulting axial strain (displacement or deformation) in the linear elastic region of the material.

Although Young's modulus is named after the 19th-century British scientist Thomas Young, the concept was developed in 1727 by Leonhard Euler. The first experiments that used the concept of Young's modulus in its modern form were performed by the Italian scientist Giordano Riccati in 1782, pre-dating Young's work by 25 years. The term modulus is derived from the Latin root term modus, which means measure.

Definition

Young's modulus, E {\displaystyle E} , quantifies the relationship between tensile or compressive stress σ {\displaystyle \sigma } (force per unit area) and axial strain ε {\displaystyle \varepsilon } (proportional deformation) in the linear elastic region of a material: E = σ ε {\displaystyle E={\frac {\sigma }{\varepsilon }}}

Young's modulus is commonly measured in the International System of Units (SI) in multiples of the pascal (Pa) and common values are in the range of gigapascals (GPa).

Examples:

  • Rubber (increasing pressure: length increases quickly, meaning low E {\displaystyle E} )
  • Aluminium (increasing pressure: length increases slowly, meaning high E {\displaystyle E} )

Linear elasticity

Main article: Linear elasticity

A solid material undergoes elastic deformation when a small load is applied to it in compression or extension. Elastic deformation is reversible, meaning that the material returns to its original shape after the load is removed.

At near-zero stress and strain, the stress–strain curve is linear, and the relationship between stress and strain is described by Hooke's law that states stress is proportional to strain. The coefficient of proportionality is Young's modulus. The higher the modulus, the more stress is needed to create the same amount of strain; an idealized rigid body would have an infinite Young's modulus. Conversely, a very soft material (such as a fluid) would deform without force, and would have zero Young's modulus.

Related but distinct properties

Material stiffness is a distinct property from the following:

  • Strength: maximum amount of stress that material can withstand while staying in the elastic (reversible) deformation regime;
  • Geometric stiffness: a global characteristic of the body that depends on its shape, and not only on the local properties of the material; for instance, an I-beam has a higher bending stiffness than a rod of the same material for a given mass per length;
  • Hardness: relative resistance of the material's surface to penetration by a harder body;
  • Toughness: amount of energy that a material can absorb before fracture.
  • The point E is the elastic limit or the yield point of the material within which the stress is proportional to strain and the material regains its original shape after removal of the external force.

Usage

Young's modulus enables the calculation of the change in the dimension of a bar made of an isotropic elastic material under tensile or compressive loads. For instance, it predicts how much a material sample extends under tension or shortens under compression. The Young's modulus directly applies to cases of uniaxial stress; that is, tensile or compressive stress in one direction and no stress in the other directions. Young's modulus is also used in order to predict the deflection that will occur in a statically determinate beam when a load is applied at a point in between the beam's supports.

Other elastic calculations usually require the use of one additional elastic property, such as the shear modulus G {\displaystyle G} , bulk modulus K {\displaystyle K} , and Poisson's ratio ν {\displaystyle \nu } . Any two of these parameters are sufficient to fully describe elasticity in an isotropic material. For example, calculating physical properties of cancerous skin tissue, has been measured and found to be a Poisson’s ratio of 0.43±0.12 and an average Young’s modulus of 52 KPa. Defining the elastic properties of skin may become the first step in turning elasticity into a clinical tool. For homogeneous isotropic materials simple relations exist between elastic constants that allow calculating them all as long as two are known:

E = 2 G ( 1 + ν ) = 3 K ( 1 2 ν ) . {\displaystyle E=2G(1+\nu )=3K(1-2\nu ).}

Linear versus non-linear

Young's modulus represents the factor of proportionality in Hooke's law, which relates the stress and the strain. However, Hooke's law is only valid under the assumption of an elastic and linear response. Any real material will eventually fail and break when stretched over a very large distance or with a very large force; however, all solid materials exhibit nearly Hookean behavior for small enough strains or stresses. If the range over which Hooke's law is valid is large enough compared to the typical stress that one expects to apply to the material, the material is said to be linear. Otherwise (if the typical stress one would apply is outside the linear range), the material is said to be non-linear.

Steel, carbon fiber and glass among others are usually considered linear materials, while other materials such as rubber and soils are non-linear. However, this is not an absolute classification: if very small stresses or strains are applied to a non-linear material, the response will be linear, but if very high stress or strain is applied to a linear material, the linear theory will not be enough. For example, as the linear theory implies reversibility, it would be absurd to use the linear theory to describe the failure of a steel bridge under a high load; although steel is a linear material for most applications, it is not in such a case of catastrophic failure.

In solid mechanics, the slope of the stress–strain curve at any point is called the tangent modulus. It can be experimentally determined from the slope of a stress–strain curve created during tensile tests conducted on a sample of the material.

Directional materials

Young's modulus is not always the same in all orientations of a material. Most metals and ceramics, along with many other materials, are isotropic, and their mechanical properties are the same in all orientations. However, metals and ceramics can be treated with certain impurities, and metals can be mechanically worked to make their grain structures directional. These materials then become anisotropic, and Young's modulus will change depending on the direction of the force vector. Anisotropy can be seen in many composites as well. For example, carbon fiber has a much higher Young's modulus (is much stiffer) when force is loaded parallel to the fibers (along the grain). Other such materials include wood and reinforced concrete. Engineers can use this directional phenomenon to their advantage in creating structures.

Temperature dependence

The Young's modulus of metals varies with the temperature and can be realized through the change in the interatomic bonding of the atoms, and hence its change is found to be dependent on the change in the work function of the metal. Although classically, this change is predicted through fitting and without a clear underlying mechanism (for example, the Watchman's formula), the Rahemi-Li model demonstrates how the change in the electron work function leads to change in the Young's modulus of metals and predicts this variation with calculable parameters, using the generalization of the Lennard-Jones potential to solids. In general, as the temperature increases, the Young's modulus decreases via E ( T ) = β ( φ ( T ) ) 6 {\displaystyle E(T)=\beta (\varphi (T))^{6}} where the electron work function varies with the temperature as φ ( T ) = φ 0 γ ( k B T ) 2 φ 0 {\displaystyle \varphi (T)=\varphi _{0}-\gamma {\frac {(k_{B}T)^{2}}{\varphi _{0}}}} and γ {\displaystyle \gamma } is a calculable material property which is dependent on the crystal structure (for example, BCC, FCC). φ 0 {\displaystyle \varphi _{0}} is the electron work function at T=0 and β {\displaystyle \beta } is constant throughout the change.

Calculation

Young's modulus is calculated by dividing the tensile stress, σ ( ε ) {\displaystyle \sigma (\varepsilon )} , by the engineering extensional strain, ε {\displaystyle \varepsilon } , in the elastic (initial, linear) portion of the physical stress–strain curve:

E σ ( ε ) ε = F / A Δ L / L 0 = F L 0 A Δ L {\displaystyle E\equiv {\frac {\sigma (\varepsilon )}{\varepsilon }}={\frac {F/A}{\Delta L/L_{0}}}={\frac {FL_{0}}{A\,\Delta L}}} where

  • E {\displaystyle E} is the Young's modulus (modulus of elasticity);
  • F {\displaystyle F} is the force exerted on an object under tension;
  • A {\displaystyle A} is the actual cross-sectional area, which equals the area of the cross-section perpendicular to the applied force;
  • Δ L {\displaystyle \Delta L} is the amount by which the length of the object changes ( Δ L {\displaystyle \Delta L} is positive if the material is stretched, and negative when the material is compressed);
  • L 0 {\displaystyle L_{0}} is the original length of the object.

Force exerted by stretched or contracted material

Young's modulus of a material can be used to calculate the force it exerts under specific strain.

F = E A Δ L L 0 {\displaystyle F={\frac {EA\,\Delta L}{L_{0}}}}

where F {\displaystyle F} is the force exerted by the material when contracted or stretched by Δ L {\displaystyle \Delta L} .

Hooke's law for a stretched wire can be derived from this formula:

F = ( E A L 0 ) Δ L = k x {\displaystyle F=\left({\frac {EA}{L_{0}}}\right)\,\Delta L=kx}

where it comes in saturation

k E A L 0 {\displaystyle k\equiv {\frac {EA}{L_{0}}}\,} and x Δ L . {\displaystyle x\equiv \Delta L.}

Note that the elasticity of coiled springs comes from shear modulus, not Young's modulus. When a spring is stretched, its wire's length doesn't change, but its shape does. This is why only the shear modulus of elasticity is involved in the stretching of a spring.

Elastic potential energy

The elastic potential energy stored in a linear elastic material is given by the integral of the Hooke's law:

U e = k x d x = 1 2 k x 2 . {\displaystyle U_{e}=\int {kx}\,dx={\frac {1}{2}}kx^{2}.}

now by explicating the intensive variables:

U e = E A Δ L L 0 d Δ L = E A L 0 Δ L d Δ L = E A Δ L 2 2 L 0 {\displaystyle U_{e}=\int {\frac {EA\,\Delta L}{L_{0}}}\,d\Delta L={\frac {EA}{L_{0}}}\int \Delta L\,d\Delta L={\frac {EA\,{\Delta L}^{2}}{2L_{0}}}}

This means that the elastic potential energy density (that is, per unit volume) is given by:

U e A L 0 = E Δ L 2 2 L 0 2 = 1 2 × E Δ L L 0 × Δ L L 0 = 1 2 × σ ( ε ) × ε {\displaystyle {\frac {U_{e}}{AL_{0}}}={\frac {E\,{\Delta L}^{2}}{2L_{0}^{2}}}={\frac {1}{2}}\times {\frac {E\,{\Delta L}}{L_{0}}}\times {\frac {\Delta L}{L_{0}}}={\frac {1}{2}}\times \sigma (\varepsilon )\times \varepsilon }

or, in simple notation, for a linear elastic material: u e ( ε ) = E ε d ε = 1 2 E ε 2 {\textstyle u_{e}(\varepsilon )=\int {E\,\varepsilon }\,d\varepsilon ={\frac {1}{2}}E{\varepsilon }^{2}} , since the strain is defined ε Δ L L 0 {\textstyle \varepsilon \equiv {\frac {\Delta L}{L_{0}}}} .

In a nonlinear elastic material the Young's modulus is a function of the strain, so the second equivalence no longer holds, and the elastic energy is not a quadratic function of the strain:

u e ( ε ) = E ( ε ) ε d ε 1 2 E ε 2 {\displaystyle u_{e}(\varepsilon )=\int E(\varepsilon )\,\varepsilon \,d\varepsilon \neq {\frac {1}{2}}E\varepsilon ^{2}}

Examples

Influences of selected glass component additions on Young's modulus of a specific base glass

Young's modulus can vary somewhat due to differences in sample composition and test method. The rate of deformation has the greatest impact on the data collected, especially in polymers. The values here are approximate and only meant for relative comparison.

Approximate Young's modulus for various materials
Material Young's modulus (GPa) Megapound per square inch (Mpsi) Ref.
Aluminium (13Al) 68 9.86
Amino-acid molecular crystals 21–44 3.05–6.38
Aramid (for example, Kevlar) 70.5–112.4 10.2–16.3
Aromatic peptide-nanospheres 230–275 33.4–39.9
Aromatic peptide-nanotubes 19–27 2.76–3.92
Bacteriophage capsids 1–3 0.145–0.435
Beryllium (4Be) 287 41.6
Bone, human cortical 14 2.03
Brass 106 15.4
Bronze 112 16.2
Carbon nitride (CN2) 822 119
Carbon-fiber-reinforced plastic (CFRP), 50/50 fibre/matrix, biaxial fabric 30–50 4.35–7.25
Carbon-fiber-reinforced plastic (CFRP), 70/30 fibre/matrix, unidirectional, along fibre 181 26.3
Cobalt-chrome (CoCr) 230 33.4
Copper (Cu), annealed 110 16
Diamond (C), synthetic 1050–1210 152–175
Diatom frustules, largely silicic acid 0.35–2.77 0.051–0.058
Flax fiber 58 8.41
Float glass 47.7–83.6 6.92–12.1
Glass-reinforced polyester (GRP) 17.2 2.49
Gold 77.2 11.2
Graphene 1050 152
Hemp fiber 35 5.08
High-density polyethylene (HDPE) 0.97–1.38 0.141–0.2
High-strength concrete 30 4.35
Lead (82Pb), chemical 13 1.89
Low-density polyethylene (LDPE), molded 0.228 0.0331
Magnesium alloy 45.2 6.56
Medium-density fiberboard (MDF) 4 0.58
Molybdenum (Mo), annealed 330 47.9
Monel 180 26.1
Mother-of-pearl (largely calcium carbonate) 70 10.2
Nickel (28Ni), commercial 200 29
Nylon 66 2.93 0.425
Osmium (76Os) 525–562 76.1–81.5
Osmium nitride (OsN2) 194.99–396.44 28.3–57.5
Polycarbonate (PC) 2.2 0.319
Polyethylene terephthalate (PET), unreinforced 3.14 0.455
Polypropylene (PP), molded 1.68 0.244
Polystyrene, crystal 2.5–3.5 0.363–0.508
Polystyrene, foam 0.0025–0.007 0.000363–0.00102
Polytetrafluoroethylene (PTFE), molded 0.564 0.0818
Rubber, small strain 0.01–0.1 0.00145–0.0145
Silicon, single crystal, different directions 130–185 18.9–26.8
Silicon carbide (SiC) 90–137 13.1–19.9
Single-walled carbon nanotube > {\displaystyle >} 1000 > {\displaystyle >} 140
Steel, A36 200 29
Stinging nettle fiber 87 12.6
Titanium (22Ti) 116 16.8
Titanium alloy, Grade 5 114 16.5
Tooth enamel, largely calcium phosphate 83 12
Tungsten carbide (WC) 600–686 87–99.5
Wood, American beech 9.5–11.9 1.38–1.73
Wood, black cherry 9–10.3 1.31–1.49
Wood, red maple 9.6–11.3 1.39–1.64
Wrought iron 193 28
Yttrium iron garnet (YIG), polycrystalline 193 28
Yttrium iron garnet (YIG), single-crystal 200 29
Zinc (30Zn) 108 15.7
Zirconium (40Zr), commercial 95 13.8

See also

References

  1. The Rational mechanics of Flexible or Elastic Bodies, 1638–1788: Introduction to Leonhardi Euleri Opera Omnia, vol. X and XI, Seriei Secundae. Orell Fussli.
  2. Jastrzebski, D. (1959). Nature and Properties of Engineering Materials (Wiley International ed.). John Wiley & Sons, Inc.
  3. Tilleman, Tamara Raveh; Tilleman, Michael M.; Neumann, Martino H.A. (December 2004). "The Elastic Properties of Cancerous Skin: Poisson's Ratio and Young's Modulus" (PDF). Israel Medical Association Journal. 6 (12): 753–755.
  4. Gorodtsov, V.A.; Lisovenko, D.S. (2019). "Extreme values of Young's modulus and Poisson's ratio of hexagonal crystals". Mechanics of Materials. 134: 1–8. doi:10.1016/j.mechmat.2019.03.017. S2CID 140493258.
  5. Rahemi, Reza; Li, Dongyang (April 2015). "Variation in electron work function with temperature and its effect on the Young's modulus of metals". Scripta Materialia. 99 (2015): 41–44. arXiv:1503.08250. Bibcode:2015arXiv150308250R. doi:10.1016/j.scriptamat.2014.11.022. S2CID 118420968.
  6. "Unit of Measure Converter". MatWeb. Retrieved May 9, 2021.
  7. "Aluminum, Al". MatWeb. Retrieved May 7, 2021.
  8. ^ Weast, Robert C. (1981). CRC Handbook of Chemistry and Physics (62nd ed.). Boca Raton, FL: CRC Press. doi:10.1002/jctb.280500215. ISBN 978-0-84-930740-9.
  9. ^ Ross, Robert B. (1992). Metallic Materials Specification Handbook (4th ed.). London: Chapman & Hall. doi:10.1007/978-1-4615-3482-2. ISBN 9780412369407.
  10. ^ Nunes, Rafael; Adams, J. H.; Ammons, Mitchell; et al. (1990). Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (PDF). ASM Handbook (10th ed.). ASM International. ISBN 978-0-87170-378-1.
  11. ^ Nayar, Alok (1997). The Metals Databook. New York, NY: McGraw-Hill. ISBN 978-0-07-462300-8.
  12. ^ Lide, David R., ed. (1999). "Commercial Metals and Alloys". CRC Handbook of Chemistry and Physics (80th ed.). Boca Raton, FL: CRC Press. ISBN 978-0-84-930480-4.
  13. ^ Azuri, Ido; Meirzadeh, Elena; Ehre, David; et al. (November 9, 2015). "Unusually Large Young's Moduli of Amino Acid Molecular Crystals" (PDF). Angewandte Chemie. 54 (46) (International ed.). Wiley: 13566–13570. doi:10.1002/anie.201505813. PMID 26373817. S2CID 13717077 – via PubMed.
  14. "Kevlar Aramid Fiber Technical Guide" (PDF). DuPont. 2017. Retrieved May 8, 2021.
  15. Adler-Abramovich, Lihi; Kol, Nitzan; Yanai, Inbal; et al. (December 17, 2010). "Self-Assembled Organic Nanostructures with Metallic-Like Stiffness". Angewandte Chemie. 49 (51) (International ed.). Wiley-VCH (published September 28, 2010): 9939–9942. doi:10.1002/anie.201002037. PMID 20878815. S2CID 44873277.
  16. Kol, Nitzan; Adler-Abramovich, Lihi; Barlam, David; et al. (June 8, 2005). "Self-Assembled Peptide Nanotubes Are Uniquely Rigid Bioinspired Supramolecular Structures". Nano Letters. 5 (7). Israel: American Chemical Society: 1343–1346. Bibcode:2005NanoL...5.1343K. doi:10.1021/nl0505896. PMID 16178235 – via ACS Publications.
  17. Niu, Lijiang; Chen, Xinyong; Allen, Stephanie; et al. (June 6, 2007). "Using the Bending Beam Model to Estimate the Elasticity of Diphenylalanine Nanotubes". Langmuir. 23 (14). American Chemical Society: 7443–7446. doi:10.1021/la7010106. PMID 17550276 – via ACS Publications.
  18. Ivanovska, Irena L.; de Pablo, Pedro J.; Ibarra, Benjamin; et al. (May 7, 2004). Lubensky, Tom C. (ed.). "Bacteriophage capsids: Tough nanoshells with complex elastic properties". Proceedings of the National Academy of Sciences of the United States of America. 101 (20). The National Academy of Sciences: 7600–7605. Bibcode:2004PNAS..101.7600I. doi:10.1073/pnas.0308198101. PMC 419652. PMID 15133147.
  19. Foley, James C.; Abeln, Stephen P.; Stanek, Paul W.; et al. (2010). "An Overview of Current Research and Industrial Practices of be Powder Metallurgy". In Marquis, Fernand D. S. (ed.). Powder Materials: Current Research and Industrial Practices III. Hoboken, NJ: John Wiley & Sons, Inc. p. 263. doi:10.1002/9781118984239.ch32. ISBN 978-1-11-898423-9.
  20. Rho, Jae Young; Ashman, Richard B.; Turner, Charles H. (February 1993). "Young's modulus of trabecular and cortical bone material: Ultrasonic and microtensile measurements". Journal of Biomechanics. 26 (2). Elsevier: 111–119. doi:10.1016/0021-9290(93)90042-d. PMID 8429054 – via Elsevier Science Direct.
  21. "Overview of materials for Brass". MatWeb. Retrieved May 7, 2021.
  22. "Overview of materials for Bronze". MatWeb. Retrieved May 7, 2021.
  23. Chowdhury, Shafiul; Laugier, Michael T.; Rahman, Ismet Zakia (April–August 2004). "Measurement of the mechanical properties of carbon nitride thin films from the nanoindentation loading curve". Diamond and Related Materials. 13 (4–8): 1543–1548. Bibcode:2004DRM....13.1543C. doi:10.1016/j.diamond.2003.11.063 – via Elsevier Science Direct.
  24. Summerscales, John (September 11, 2019). "Composites Design and Manufacture (Plymouth University teaching support materials)". Advanced Composites Manufacturing Centre. University of Plymouth. Retrieved May 8, 2021.
  25. Kopeliovich, Dmitri (June 3, 2012). "Epoxy Matrix Composite reinforced by 70% carbon fibers". SubsTech. Retrieved May 8, 2021.
  26. Bose, Susmita; Banerjee, Dishary; Bandyopadhyay, Amit (2016). "Introduction to Biomaterials and Devices for Bone Disorders". In Bose, Susmita; Bandyopadhyay, Amit (eds.). Materials for Bone Disorders. Academic Press. pp. 1–27. doi:10.1016/B978-0-12-802792-9.00001-X. ISBN 978-0-12-802792-9.
  27. "Copper, Cu; Annealed". MatWeb. Retrieved May 9, 2021.
  28. Spear, Karl E.; Dismukes, John P., eds. (1994). Synthetic Diamond: Emerging CVD Science and Technology. Wiley. p. 315. ISBN 978-0-47-153589-8. ISSN 0275-0171.
  29. Subhash, Ghatu; Yao, Shuhuai; Bellinger, Brent; Gretz, Michael R. (January 2005). "Investigation of mechanical properties of diatom frustules using nanoindentation". Journal of Nanoscience and Nanotechnology. 5 (1). American Scientific Publishers: 50–56. doi:10.1166/jnn.2005.006. PMID 15762160 – via Ingenta Connect.
  30. ^ Bodros, Edwin; Baley, Christophe (May 15, 2008). "Study of the tensile properties of stinging nettle fibres (Urtica dioica)". Materials Letters. 62 (14): 2143–2145. CiteSeerX 10.1.1.299.6908. doi:10.1016/j.matlet.2007.11.034 – via Elsevier Science Direct.
  31. "Float glass – Properties and Applications". AZO Materials. February 16, 2001. Retrieved May 9, 2021.
  32. Kopeliovich, Dmitri (March 6, 2012). "Polyester Matrix Composite reinforced by glass fibers (Fiberglass)". SubsTech. Retrieved May 7, 2021.
  33. "Gold material property data". MatWeb. Retrieved September 8, 2021.
  34. Liu, Fang; Ming, Pingbing; Li, Ju (August 28, 2007). "Ab initio calculation of ideal strength and phonon instability of graphene under tension" (PDF). Physical Review B. 76 (6). American Physical Society: 064120. Bibcode:2007PhRvB..76f4120L. doi:10.1103/PhysRevB.76.064120 – via APS Physics.
  35. Saheb, Nabi; Jog, Jyoti (October 15, 1999). "Natural fibre polymer composites: a review". Advances in Polymer Technology. 18 (4). John Wiley & Sons, Inc.: 351–363. doi:10.1002/(SICI)1098-2329(199924)18:4<351::AID-ADV6>3.0.CO;2-X.
  36. "High-Density Polyethylene (HDPE)". Polymer Database. Chemical Retrieval on the Web. Retrieved May 9, 2021.
  37. Cardarelli, François (2008). "Cements, Concrete, Building Stones, and Construction Materials". Materials Handbook: A Concise Desktop Reference (2nd ed.). London: Springer-Verlag. pp. 1421–1439. doi:10.1007/978-3-319-38925-7_15. ISBN 978-3-319-38923-3.
  38. "Overview of materials for Low Density Polyethylene (LDPE), Molded". MatWeb. Retrieved May 7, 2021.
  39. "Overview of materials for Magnesium Alloy". MatWeb. Retrieved May 9, 2021.
  40. "Medium Density Fiberboard (MDF)". MakeItFrom. May 30, 2020. Retrieved May 8, 2021.
  41. "Molybdenum, Mo, Annealed". MatWeb. Retrieved May 9, 2021.
  42. Jackson, Andrew P.; Vincent, Julian F. V.; Turner, R. M. (September 22, 1988). "The mechanical design of nacre". Proceedings of the Royal Society B. 234 (1277). Royal Society: 415–440. Bibcode:1988RSPSB.234..415J. doi:10.1098/rspb.1988.0056. eISSN 2053-9193. ISSN 0080-4649. S2CID 135544277 – via The Royal Society Publishing.
  43. "Nylon® 6/6 (Polyamide)". Poly-Tech Industrial, Inc. 2011. Retrieved May 9, 2021.
  44. Pandey, Dharmendra Kumar; Singh, Devraj; Yadawa, Pramod Kumar (April 2, 2009). "Ultrasonic Study of Osmium and Ruthenium" (PDF). Platinum Metals Review. 53 (4). Johnson Matthey: 91–97. doi:10.1595/147106709X430927. Retrieved May 7, 2021 – via Ingenta Connect.
  45. Gaillac, Romain; Coudert, François-Xavier (July 26, 2020). "ELATE: Elastic tensor analysis". ELATE. Retrieved May 9, 2021.
  46. "Polycarbonate". DesignerData. Retrieved May 9, 2021.
  47. "Overview of materials for Polyethylene Terephthalate (PET), Unreinforced". MatWeb. Retrieved May 9, 2021.
  48. "Overview of Materials for Polypropylene, Molded". MatWeb. Retrieved May 9, 2021.
  49. "Young's Modulus: Tensile Elasticity Units, Factors & Material Table". Omnexus. SpecialChem. Retrieved May 9, 2021.
  50. "Technical Data – Application Recommendations Dimensioning Aids". Stryodur. BASF. August 2019. Retrieved May 7, 2021.
  51. "Overview of materials for Polytetrafluoroethylene (PTFE), Molded". MatWeb. Retrieved May 9, 2021.
  52. Boyd, Euan J.; Uttamchandani, Deepak (2012). "Measurement of the Anisotropy of Young's Modulus in Single-Crystal Silicon". Journal of Microelectromechanical Systems. 21 (1). Institute of Electrical and Electronics Engineers: 243–249. doi:10.1109/JMEMS.2011.2174415. eISSN 1941-0158. ISSN 1057-7157. S2CID 39025763 – via IEEE Xplore.
  53. "Silicon Carbide (SiC) Properties and Applications". AZO Materials. February 5, 2001. Retrieved May 9, 2021.
  54. Forró, László; Salvetat, Jean-Paul; Bonard, Jean-Marc; et al. (January 2002). Thorpe, Michael F.; Tománek, David; Enbody, Richard J. (eds.). "Electronic and Mechanical Properties of Carbon Nanotubes". Science and Application of Nanotubes. Fundamentals Materials Research. Boston, MA: Springer: 297–320. doi:10.1007/0-306-47098-5_22. ISBN 978-0-306-46372-3 – via ResearchGate.
  55. Yang, Yi-Hsuan; Li, Wenzhi (January 24, 2011). "Radial elasticity of single-walled carbon nanotube measured by atomic force microscopy". Applied Physics Letters. 98 (4). American Institute of Physics: 041901. Bibcode:2011ApPhL..98d1901Y. doi:10.1063/1.3546170.
  56. "ASTM A36 Mild/Low Carbon Steel". AZO Materials. July 5, 2012. Retrieved May 9, 2021.
  57. "Titanium, Ti". MatWeb. Retrieved May 7, 2021.
  58. Boyer, Rodney; Welsch, Gerhard; Collings, Edward W., eds. (1994). Materials Properties Handbook: Titanium Alloys. Materials Park, OH: ASM International. ISBN 978-0-87-170481-8.
  59. U.S. Titanium Industry Inc. (July 30, 2002). "Titanium Alloys – Ti6Al4V Grade 5". AZO Materials. Retrieved May 9, 2021.
  60. Staines, Michael; Robinson, W. H.; Hood, J. A. A. (September 1981). "Spherical indentation of tooth enamel". Journal of Materials Science. 16 (9). Springer: 2551–2556. Bibcode:1981JMatS..16.2551S. doi:10.1007/bf01113595. S2CID 137704231 – via Springer Link.
  61. "Tungsten Carbide – An Overview". AZO Materials. January 21, 2002. Retrieved May 9, 2021.
  62. ^ Green, David W.; Winandy, Jerrold E.; Kretschmann, David E. (1999). "Mechanical Properties of Wood". Wood Handbook: Wood as an Engineering Material (PDF). Madison, WI: Forest Products Laboratory. pp. 4–8. Archived from the original (PDF) on July 20, 2018.
  63. "Wrought Iron – Properties and Applications". AZO Materials. August 13, 2013. Retrieved May 9, 2021.
  64. Chou, Hung-Ming; Case, E. D. (November 1988). "Characterization of some mechanical properties of polycrystalline yttrium iron garnet (YIG) by non-destructive methods". Journal of Materials Science Letters. 7 (11): 1217–1220. doi:10.1007/BF00722341. S2CID 135957639 – via SpringerLink.
  65. "Yttrium Iron Garnet". Deltronic Crystal Industries, Inc. December 28, 2012. Retrieved May 7, 2021.
  66. "An Introduction to Zinc". AZO Materials. July 23, 2001. Retrieved May 9, 2021.

Further reading

External links

Major branches of physics
Divisions
Approaches
Classical
Modern
Interdisciplinary
Related
Elastic moduli for homogeneous isotropic materials
Conversion formulae
Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these; thus, given any two, any other of the elastic moduli can be calculated according to these formulas, provided both for 3D materials (first part of the table) and for 2D materials (second part).
3D formulae K = {\displaystyle K=\,} E = {\displaystyle E=\,} λ = {\displaystyle \lambda =\,} G = {\displaystyle G=\,} ν = {\displaystyle \nu =\,} M = {\displaystyle M=\,} Notes
( K , E ) {\displaystyle (K,\,E)} 3 K ( 3 K E ) 9 K E {\displaystyle {\tfrac {3K(3K-E)}{9K-E}}} 3 K E 9 K E {\displaystyle {\tfrac {3KE}{9K-E}}} 3 K E 6 K {\displaystyle {\tfrac {3K-E}{6K}}} 3 K ( 3 K + E ) 9 K E {\displaystyle {\tfrac {3K(3K+E)}{9K-E}}}
( K , λ ) {\displaystyle (K,\,\lambda )} 9 K ( K λ ) 3 K λ {\displaystyle {\tfrac {9K(K-\lambda )}{3K-\lambda }}} 3 ( K λ ) 2 {\displaystyle {\tfrac {3(K-\lambda )}{2}}} λ 3 K λ {\displaystyle {\tfrac {\lambda }{3K-\lambda }}} 3 K 2 λ {\displaystyle 3K-2\lambda \,}
( K , G ) {\displaystyle (K,\,G)} 9 K G 3 K + G {\displaystyle {\tfrac {9KG}{3K+G}}} K 2 G 3 {\displaystyle K-{\tfrac {2G}{3}}} 3 K 2 G 2 ( 3 K + G ) {\displaystyle {\tfrac {3K-2G}{2(3K+G)}}} K + 4 G 3 {\displaystyle K+{\tfrac {4G}{3}}}
( K , ν ) {\displaystyle (K,\,\nu )} 3 K ( 1 2 ν ) {\displaystyle 3K(1-2\nu )\,} 3 K ν 1 + ν {\displaystyle {\tfrac {3K\nu }{1+\nu }}} 3 K ( 1 2 ν ) 2 ( 1 + ν ) {\displaystyle {\tfrac {3K(1-2\nu )}{2(1+\nu )}}} 3 K ( 1 ν ) 1 + ν {\displaystyle {\tfrac {3K(1-\nu )}{1+\nu }}}
( K , M ) {\displaystyle (K,\,M)} 9 K ( M K ) 3 K + M {\displaystyle {\tfrac {9K(M-K)}{3K+M}}} 3 K M 2 {\displaystyle {\tfrac {3K-M}{2}}} 3 ( M K ) 4 {\displaystyle {\tfrac {3(M-K)}{4}}} 3 K M 3 K + M {\displaystyle {\tfrac {3K-M}{3K+M}}}
( E , λ ) {\displaystyle (E,\,\lambda )} E + 3 λ + R 6 {\displaystyle {\tfrac {E+3\lambda +R}{6}}} E 3 λ + R 4 {\displaystyle {\tfrac {E-3\lambda +R}{4}}} 2 λ E + λ + R {\displaystyle {\tfrac {2\lambda }{E+\lambda +R}}} E λ + R 2 {\displaystyle {\tfrac {E-\lambda +R}{2}}} R = E 2 + 9 λ 2 + 2 E λ {\displaystyle R={\sqrt {E^{2}+9\lambda ^{2}+2E\lambda }}}
( E , G ) {\displaystyle (E,\,G)} E G 3 ( 3 G E ) {\displaystyle {\tfrac {EG}{3(3G-E)}}} G ( E 2 G ) 3 G E {\displaystyle {\tfrac {G(E-2G)}{3G-E}}} E 2 G 1 {\displaystyle {\tfrac {E}{2G}}-1} G ( 4 G E ) 3 G E {\displaystyle {\tfrac {G(4G-E)}{3G-E}}}
( E , ν ) {\displaystyle (E,\,\nu )} E 3 ( 1 2 ν ) {\displaystyle {\tfrac {E}{3(1-2\nu )}}} E ν ( 1 + ν ) ( 1 2 ν ) {\displaystyle {\tfrac {E\nu }{(1+\nu )(1-2\nu )}}} E 2 ( 1 + ν ) {\displaystyle {\tfrac {E}{2(1+\nu )}}} E ( 1 ν ) ( 1 + ν ) ( 1 2 ν ) {\displaystyle {\tfrac {E(1-\nu )}{(1+\nu )(1-2\nu )}}}
( E , M ) {\displaystyle (E,\,M)} 3 M E + S 6 {\displaystyle {\tfrac {3M-E+S}{6}}} M E + S 4 {\displaystyle {\tfrac {M-E+S}{4}}} 3 M + E S 8 {\displaystyle {\tfrac {3M+E-S}{8}}} E M + S 4 M {\displaystyle {\tfrac {E-M+S}{4M}}} S = ± E 2 + 9 M 2 10 E M {\displaystyle S=\pm {\sqrt {E^{2}+9M^{2}-10EM}}}

There are two valid solutions.
The plus sign leads to ν 0 {\displaystyle \nu \geq 0} .

The minus sign leads to ν 0 {\displaystyle \nu \leq 0} .

( λ , G ) {\displaystyle (\lambda ,\,G)} λ + 2 G 3 {\displaystyle \lambda +{\tfrac {2G}{3}}} G ( 3 λ + 2 G ) λ + G {\displaystyle {\tfrac {G(3\lambda +2G)}{\lambda +G}}} λ 2 ( λ + G ) {\displaystyle {\tfrac {\lambda }{2(\lambda +G)}}} λ + 2 G {\displaystyle \lambda +2G\,}
( λ , ν ) {\displaystyle (\lambda ,\,\nu )} λ ( 1 + ν ) 3 ν {\displaystyle {\tfrac {\lambda (1+\nu )}{3\nu }}} λ ( 1 + ν ) ( 1 2 ν ) ν {\displaystyle {\tfrac {\lambda (1+\nu )(1-2\nu )}{\nu }}} λ ( 1 2 ν ) 2 ν {\displaystyle {\tfrac {\lambda (1-2\nu )}{2\nu }}} λ ( 1 ν ) ν {\displaystyle {\tfrac {\lambda (1-\nu )}{\nu }}} Cannot be used when ν = 0 λ = 0 {\displaystyle \nu =0\Leftrightarrow \lambda =0}
( λ , M ) {\displaystyle (\lambda ,\,M)} M + 2 λ 3 {\displaystyle {\tfrac {M+2\lambda }{3}}} ( M λ ) ( M + 2 λ ) M + λ {\displaystyle {\tfrac {(M-\lambda )(M+2\lambda )}{M+\lambda }}} M λ 2 {\displaystyle {\tfrac {M-\lambda }{2}}} λ M + λ {\displaystyle {\tfrac {\lambda }{M+\lambda }}}
( G , ν ) {\displaystyle (G,\,\nu )} 2 G ( 1 + ν ) 3 ( 1 2 ν ) {\displaystyle {\tfrac {2G(1+\nu )}{3(1-2\nu )}}} 2 G ( 1 + ν ) {\displaystyle 2G(1+\nu )\,} 2 G ν 1 2 ν {\displaystyle {\tfrac {2G\nu }{1-2\nu }}} 2 G ( 1 ν ) 1 2 ν {\displaystyle {\tfrac {2G(1-\nu )}{1-2\nu }}}
( G , M ) {\displaystyle (G,\,M)} M 4 G 3 {\displaystyle M-{\tfrac {4G}{3}}} G ( 3 M 4 G ) M G {\displaystyle {\tfrac {G(3M-4G)}{M-G}}} M 2 G {\displaystyle M-2G\,} M 2 G 2 M 2 G {\displaystyle {\tfrac {M-2G}{2M-2G}}}
( ν , M ) {\displaystyle (\nu ,\,M)} M ( 1 + ν ) 3 ( 1 ν ) {\displaystyle {\tfrac {M(1+\nu )}{3(1-\nu )}}} M ( 1 + ν ) ( 1 2 ν ) 1 ν {\displaystyle {\tfrac {M(1+\nu )(1-2\nu )}{1-\nu }}} M ν 1 ν {\displaystyle {\tfrac {M\nu }{1-\nu }}} M ( 1 2 ν ) 2 ( 1 ν ) {\displaystyle {\tfrac {M(1-2\nu )}{2(1-\nu )}}}
2D formulae K 2 D = {\displaystyle K_{\mathrm {2D} }=\,} E 2 D = {\displaystyle E_{\mathrm {2D} }=\,} λ 2 D = {\displaystyle \lambda _{\mathrm {2D} }=\,} G 2 D = {\displaystyle G_{\mathrm {2D} }=\,} ν 2 D = {\displaystyle \nu _{\mathrm {2D} }=\,} M 2 D = {\displaystyle M_{\mathrm {2D} }=\,} Notes
( K 2 D , E 2 D ) {\displaystyle (K_{\mathrm {2D} },\,E_{\mathrm {2D} })} 2 K 2 D ( 2 K 2 D E 2 D ) 4 K 2 D E 2 D {\displaystyle {\tfrac {2K_{\mathrm {2D} }(2K_{\mathrm {2D} }-E_{\mathrm {2D} })}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}} K 2 D E 2 D 4 K 2 D E 2 D {\displaystyle {\tfrac {K_{\mathrm {2D} }E_{\mathrm {2D} }}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}} 2 K 2 D E 2 D 2 K 2 D {\displaystyle {\tfrac {2K_{\mathrm {2D} }-E_{\mathrm {2D} }}{2K_{\mathrm {2D} }}}} 4 K 2 D 2 4 K 2 D E 2 D {\displaystyle {\tfrac {4K_{\mathrm {2D} }^{2}}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}}
( K 2 D , λ 2 D ) {\displaystyle (K_{\mathrm {2D} },\,\lambda _{\mathrm {2D} })} 4 K 2 D ( K 2 D λ 2 D ) 2 K 2 D λ 2 D {\displaystyle {\tfrac {4K_{\mathrm {2D} }(K_{\mathrm {2D} }-\lambda _{\mathrm {2D} })}{2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}}} K 2 D λ 2 D {\displaystyle K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }} λ 2 D 2 K 2 D λ 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}}} 2 K 2 D λ 2 D {\displaystyle 2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}
( K 2 D , G 2 D ) {\displaystyle (K_{\mathrm {2D} },\,G_{\mathrm {2D} })} 4 K 2 D G 2 D K 2 D + G 2 D {\displaystyle {\tfrac {4K_{\mathrm {2D} }G_{\mathrm {2D} }}{K_{\mathrm {2D} }+G_{\mathrm {2D} }}}} K 2 D G 2 D {\displaystyle K_{\mathrm {2D} }-G_{\mathrm {2D} }} K 2 D G 2 D K 2 D + G 2 D {\displaystyle {\tfrac {K_{\mathrm {2D} }-G_{\mathrm {2D} }}{K_{\mathrm {2D} }+G_{\mathrm {2D} }}}} K 2 D + G 2 D {\displaystyle K_{\mathrm {2D} }+G_{\mathrm {2D} }}
( K 2 D , ν 2 D ) {\displaystyle (K_{\mathrm {2D} },\,\nu _{\mathrm {2D} })} 2 K 2 D ( 1 ν 2 D ) {\displaystyle 2K_{\mathrm {2D} }(1-\nu _{\mathrm {2D} })\,} 2 K 2 D ν 2 D 1 + ν 2 D {\displaystyle {\tfrac {2K_{\mathrm {2D} }\nu _{\mathrm {2D} }}{1+\nu _{\mathrm {2D} }}}} K 2 D ( 1 ν 2 D ) 1 + ν 2 D {\displaystyle {\tfrac {K_{\mathrm {2D} }(1-\nu _{\mathrm {2D} })}{1+\nu _{\mathrm {2D} }}}} 2 K 2 D 1 + ν 2 D {\displaystyle {\tfrac {2K_{\mathrm {2D} }}{1+\nu _{\mathrm {2D} }}}}
( E 2 D , G 2 D ) {\displaystyle (E_{\mathrm {2D} },\,G_{\mathrm {2D} })} E 2 D G 2 D 4 G 2 D E 2 D {\displaystyle {\tfrac {E_{\mathrm {2D} }G_{\mathrm {2D} }}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}} 2 G 2 D ( E 2 D 2 G 2 D ) 4 G 2 D E 2 D {\displaystyle {\tfrac {2G_{\mathrm {2D} }(E_{\mathrm {2D} }-2G_{\mathrm {2D} })}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}} E 2 D 2 G 2 D 1 {\displaystyle {\tfrac {E_{\mathrm {2D} }}{2G_{\mathrm {2D} }}}-1} 4 G 2 D 2 4 G 2 D E 2 D {\displaystyle {\tfrac {4G_{\mathrm {2D} }^{2}}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}}
( E 2 D , ν 2 D ) {\displaystyle (E_{\mathrm {2D} },\,\nu _{\mathrm {2D} })} E 2 D 2 ( 1 ν 2 D ) {\displaystyle {\tfrac {E_{\mathrm {2D} }}{2(1-\nu _{\mathrm {2D} })}}} E 2 D ν 2 D ( 1 + ν 2 D ) ( 1 ν 2 D ) {\displaystyle {\tfrac {E_{\mathrm {2D} }\nu _{\mathrm {2D} }}{(1+\nu _{\mathrm {2D} })(1-\nu _{\mathrm {2D} })}}} E 2 D 2 ( 1 + ν 2 D ) {\displaystyle {\tfrac {E_{\mathrm {2D} }}{2(1+\nu _{\mathrm {2D} })}}} E 2 D ( 1 + ν 2 D ) ( 1 ν 2 D ) {\displaystyle {\tfrac {E_{\mathrm {2D} }}{(1+\nu _{\mathrm {2D} })(1-\nu _{\mathrm {2D} })}}}
( λ 2 D , G 2 D ) {\displaystyle (\lambda _{\mathrm {2D} },\,G_{\mathrm {2D} })} λ 2 D + G 2 D {\displaystyle \lambda _{\mathrm {2D} }+G_{\mathrm {2D} }} 4 G 2 D ( λ 2 D + G 2 D ) λ 2 D + 2 G 2 D {\displaystyle {\tfrac {4G_{\mathrm {2D} }(\lambda _{\mathrm {2D} }+G_{\mathrm {2D} })}{\lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }}}} λ 2 D λ 2 D + 2 G 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{\lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }}}} λ 2 D + 2 G 2 D {\displaystyle \lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }\,}
( λ 2 D , ν 2 D ) {\displaystyle (\lambda _{\mathrm {2D} },\,\nu _{\mathrm {2D} })} λ 2 D ( 1 + ν 2 D ) 2 ν 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1+\nu _{\mathrm {2D} })}{2\nu _{\mathrm {2D} }}}} λ 2 D ( 1 + ν 2 D ) ( 1 ν 2 D ) ν 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1+\nu _{\mathrm {2D} })(1-\nu _{\mathrm {2D} })}{\nu _{\mathrm {2D} }}}} λ 2 D ( 1 ν 2 D ) 2 ν 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1-\nu _{\mathrm {2D} })}{2\nu _{\mathrm {2D} }}}} λ 2 D ν 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{\nu _{\mathrm {2D} }}}} Cannot be used when ν 2 D = 0 λ 2 D = 0 {\displaystyle \nu _{\mathrm {2D} }=0\Leftrightarrow \lambda _{\mathrm {2D} }=0}
( G 2 D , ν 2 D ) {\displaystyle (G_{\mathrm {2D} },\,\nu _{\mathrm {2D} })} G 2 D ( 1 + ν 2 D ) 1 ν 2 D {\displaystyle {\tfrac {G_{\mathrm {2D} }(1+\nu _{\mathrm {2D} })}{1-\nu _{\mathrm {2D} }}}} 2 G 2 D ( 1 + ν 2 D ) {\displaystyle 2G_{\mathrm {2D} }(1+\nu _{\mathrm {2D} })\,} 2 G 2 D ν 2 D 1 ν 2 D {\displaystyle {\tfrac {2G_{\mathrm {2D} }\nu _{\mathrm {2D} }}{1-\nu _{\mathrm {2D} }}}} 2 G 2 D 1 ν 2 D {\displaystyle {\tfrac {2G_{\mathrm {2D} }}{1-\nu _{\mathrm {2D} }}}}
( G 2 D , M 2 D ) {\displaystyle (G_{\mathrm {2D} },\,M_{\mathrm {2D} })} M 2 D G 2 D {\displaystyle M_{\mathrm {2D} }-G_{\mathrm {2D} }} 4 G 2 D ( M 2 D G 2 D ) M 2 D {\displaystyle {\tfrac {4G_{\mathrm {2D} }(M_{\mathrm {2D} }-G_{\mathrm {2D} })}{M_{\mathrm {2D} }}}} M 2 D 2 G 2 D {\displaystyle M_{\mathrm {2D} }-2G_{\mathrm {2D} }\,} M 2 D 2 G 2 D M 2 D {\displaystyle {\tfrac {M_{\mathrm {2D} }-2G_{\mathrm {2D} }}{M_{\mathrm {2D} }}}}



Categories:
Young's modulus Add topic