Misplaced Pages

Zinc

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Zinc concentrate) This article is about the chemical element. For other uses, see Zinc (disambiguation).

Chemical element with atomic number 30 (Zn)
Zinc, 30Zn
Zinc
Appearancesilver-gray
Standard atomic weight Ar°(Zn)
Zinc in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson


Zn

Cd
copperzincgallium
Atomic number (Z)30
Groupgroup 12
Periodperiod 4
Block  d-block
Electron configuration[Ar] 3d 4s
Electrons per shell2, 8, 18, 2
Physical properties
Phase at STPsolid
Melting point692.68 K ​(419.53 °C, ​787.15 °F)
Boiling point1180 K ​(907 °C, ​1665 °F)
Density (at 20° C)7.140 g/cm 
when liquid (at m.p.)6.57 g/cm
Heat of fusion7.32 kJ/mol
Heat of vaporization115 kJ/mol
Molar heat capacity25.470 J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 610 670 750 852 990 1179
Atomic properties
Oxidation statescommon: +2
−2, 0, +1
ElectronegativityPauling scale: 1.65
Ionization energies
  • 1st: 906.4 kJ/mol
  • 2nd: 1733.3 kJ/mol
  • 3rd: 3833 kJ/mol
  • (more)
Atomic radiusempirical: 134 pm
Covalent radius122±4 pm
Van der Waals radius139 pm
Color lines in a spectral range
Spectral lines of zinc
Other properties
Natural occurrenceprimordial
Crystal structurehexagonal close-packed (hcp) (hP2)
Lattice constantsHexagonal close packed crystal structure for zinca = 266.46 pm
c = 494.55 pm (at 20 °C)
Thermal expansion30.08×10/K (at 20 °C)
Thermal conductivity116 W/(m⋅K)
Electrical resistivity59.0 nΩ⋅m (at 20 °C)
Magnetic orderingdiamagnetic
Molar magnetic susceptibility−11.4×10 cm/mol (298 K)
Young's modulus108 GPa
Shear modulus43 GPa
Bulk modulus70 GPa
Speed of sound thin rod3850 m/s (at r.t.) (rolled)
Poisson ratio0.25
Mohs hardness2.5
Brinell hardness327–412 MPa
CAS Number7440-66-6
History
DiscoveryIndian metallurgists (before 1000 BCE)
First isolationAndreas Sigismund Marggraf (1746)
Recognized as a unique metal byRasaratna Samuccaya (1300)
Isotopes of zinc
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
Zn 49.2% stable
Zn synth 244 d β Cu
Zn 27.7% stable
Zn 4% stable
Zn 18.5% stable
Zn synth 56 min β Ga
Zn synth 13.8 h β Ga
Zn 0.6% stable
Zn synth 2.4 min β Ga
Zn synth 4 h β Ga
Zn synth 46.5 h β Ga
 Category: Zinc
| references

Zinc is a chemical element with the symbol Zn and atomic number 30. It is a slightly brittle metal at room temperature and has a shiny-greyish appearance when oxidation is removed. It is the first element in group 12 (IIB) of the periodic table. In some respects, zinc is chemically similar to magnesium: both elements exhibit only one normal oxidation state (+2), and the Zn and Mg ions are of similar size. Zinc is the 24th most abundant element in Earth's crust and has five stable isotopes. The most common zinc ore is sphalerite (zinc blende), a zinc sulfide mineral. The largest workable lodes are in Australia, Asia, and the United States. Zinc is refined by froth flotation of the ore, roasting, and final extraction using electricity (electrowinning).

Zinc is an essential trace element for humans, animals, plants and for microorganisms and is necessary for prenatal and postnatal development. It is the second most abundant trace metal in humans after iron and it is the only metal which appears in all enzyme classes. Zinc is also an essential nutrient element for coral growth as it is an important cofactor for many enzymes.

Zinc deficiency affects about two billion people in the developing world and is associated with many diseases. In children, deficiency causes growth retardation, delayed sexual maturation, infection susceptibility, and diarrhea. Enzymes with a zinc atom in the reactive center are widespread in biochemistry, such as alcohol dehydrogenase in humans. Consumption of excess zinc may cause ataxia, lethargy, and copper deficiency. In marine biomes, notably within polar regions, a deficit of zinc can compromise the vitality of primary algal communities, potentially destabilizing the intricate marine trophic structures and consequently impacting biodiversity.

Brass, an alloy of copper and zinc in various proportions, was used as early as the third millennium BC in the Aegean area and the region which currently includes Iraq, the United Arab Emirates, Kalmykia, Turkmenistan and Georgia. In the second millennium BC it was used in the regions currently including West India, Uzbekistan, Iran, Syria, Iraq, and Israel. Zinc metal was not produced on a large scale until the 12th century in India, though it was known to the ancient Romans and Greeks. The mines of Rajasthan have given definite evidence of zinc production going back to the 6th century BC. The oldest evidence of pure zinc comes from Zawar, in Rajasthan, as early as the 9th century AD when a distillation process was employed to make pure zinc. Alchemists burned zinc in air to form what they called "philosopher's wool" or "white snow".

The element was probably named by the alchemist Paracelsus after the German word Zinke (prong, tooth). German chemist Andreas Sigismund Marggraf is credited with discovering pure metallic zinc in 1746. Work by Luigi Galvani and Alessandro Volta uncovered the electrochemical properties of zinc by 1800. Corrosion-resistant zinc plating of iron (hot-dip galvanizing) is the major application for zinc. Other applications are in electrical batteries, small non-structural castings, and alloys such as brass. A variety of zinc compounds are commonly used, such as zinc carbonate and zinc gluconate (as dietary supplements), zinc chloride (in deodorants), zinc pyrithione (anti-dandruff shampoos), zinc sulfide (in luminescent paints), and dimethylzinc or diethylzinc in the organic laboratory.

Characteristics

Physical properties

Zinc is a bluish-white, lustrous, diamagnetic metal, though most common commercial grades of the metal have a dull finish. It is somewhat less dense than iron and has a hexagonal crystal structure, with a distorted form of hexagonal close packing, in which each atom has six nearest neighbors (at 265.9 pm) in its own plane and six others at a greater distance of 290.6 pm. The metal is hard and brittle at most temperatures but becomes malleable between 100 and 150 °C. Above 210 °C, the metal becomes brittle again and can be pulverized by beating. Zinc is a fair conductor of electricity. For a metal, zinc has relatively low melting (419.5 °C) and boiling point (907 °C). The melting point is the lowest of all the d-block metals aside from mercury and cadmium; for this reason among others, zinc, cadmium, and mercury are often not considered to be transition metals like the rest of the d-block metals.

Many alloys contain zinc, including brass. Other metals long known to form binary alloys with zinc are aluminium, antimony, bismuth, gold, iron, lead, mercury, silver, tin, magnesium, cobalt, nickel, tellurium, and sodium. Although neither zinc nor zirconium is ferromagnetic, their alloy, ZrZn
2, exhibits ferromagnetism below 35 K.

Occurrence

See also: Zinc minerals

Zinc makes up about 75 ppm (0.0075%) of Earth's crust, making it the 24th most abundant element. It also makes up 312 ppm of the solar system, where it is the 22nd most abundant element. Typical background concentrations of zinc do not exceed 1 μg/m in the atmosphere; 300 mg/kg in soil; 100 mg/kg in vegetation; 20 μg/L in freshwater and 5 μg/L in seawater. The element is normally found in association with other base metals such as copper and lead in ores. Zinc is a chalcophile, meaning the element is more likely to be found in minerals together with sulfur and other heavy chalcogens, rather than with the light chalcogen oxygen or with non-chalcogen electronegative elements such as the halogens. Sulfides formed as the crust solidified under the reducing conditions of the early Earth's atmosphere. Sphalerite, which is a form of zinc sulfide, is the most heavily mined zinc-containing ore because its concentrate contains 60–62% zinc.

Other source minerals for zinc include smithsonite (zinc carbonate), hemimorphite (zinc silicate), wurtzite (another zinc sulfide), and sometimes hydrozincite (basic zinc carbonate). With the exception of wurtzite, all these other minerals were formed by weathering of the primordial zinc sulfides.

Identified world zinc resources total about 1.9–2.8 billion tonnes. Large deposits are in Australia, Canada and the United States, with the largest reserves in Iran. The most recent estimate of reserve base for zinc (meets specified minimum physical criteria related to current mining and production practices) was made in 2009 and calculated to be roughly 480 Mt. Zinc reserves, on the other hand, are geologically identified ore bodies whose suitability for recovery is economically based (location, grade, quality, and quantity) at the time of determination. Since exploration and mine development is an ongoing process, the amount of zinc reserves is not a fixed number and sustainability of zinc ore supplies cannot be judged by simply extrapolating the combined mine life of today's zinc mines. This concept is well supported by data from the United States Geological Survey (USGS), which illustrates that although refined zinc production increased 80% between 1990 and 2010, the reserve lifetime for zinc has remained unchanged. About 346 million tonnes have been extracted throughout history to 2002, and scholars have estimated that about 109–305 million tonnes are in use.

A black shiny lump of solid with uneven surface
Sphalerite (ZnS)

Isotopes

Main article: Isotopes of zinc

Five stable isotopes of zinc occur in nature, with Zn being the most abundant isotope (49.17% natural abundance). The other isotopes found in nature are
Zn (27.73%),
Zn (4.04%),
Zn (18.45%), and
Zn (0.61%).

Several dozen radioisotopes have been characterized.
Zn, which has a half-life of 243.66 days, is the least active radioisotope, followed by
Zn with a half-life of 46.5 hours. Zinc has 10 nuclear isomers, of which Zn has the longest half-life, 13.76 h. The superscript m indicates a metastable isotope. The nucleus of a metastable isotope is in an excited state and will return to the ground state by emitting a photon in the form of a gamma ray.
Zn has three excited metastable states and
Zn has two. The isotopes
Zn,
Zn,
Zn and
Zn each have only one excited metastable state.

The most common decay mode of a radioisotope of zinc with a mass number lower than 66 is electron capture. The decay product resulting from electron capture is an isotope of copper.


30Zn
+
e

29Cu
+
ν
e

The most common decay mode of a radioisotope of zinc with mass number higher than 66 is beta decay (β), which produces an isotope of gallium.


30Zn

31Ga
+
e
+
ν
e

Compounds and chemistry

Main article: Zinc compounds

Reactivity

See also: Clemmensen reduction

Zinc has an electron configuration of 3d4s and is a member of the group 12 of the periodic table. It is a moderately reactive metal and strong reducing agent; in the reactivity series it is comparable to manganese. The surface of the pure metal tarnishes quickly, eventually forming a protective passivating layer of the basic zinc carbonate, Zn
5(OH)
6(CO3)
2, by reaction with atmospheric carbon dioxide.

Zinc burns in air with a bright bluish-green flame, giving off fumes of zinc oxide. Zinc reacts readily with acids, alkalis and other non-metals. Extremely pure zinc reacts only slowly at room temperature with acids. Strong acids, such as hydrochloric or sulfuric acid, can remove the passivating layer and the subsequent reaction with the acid releases hydrogen gas.

Zinc chemistry resembles that of the late first-row transition metals, nickel and copper, as well as certain main group elements. Almost all zinc compounds have the element in the +2 oxidation state. When Zn compounds form, the outer shell s electrons are lost, yielding a bare zinc ion with the electronic configuration 3d. The filled interior d shell generally does not participate in bonding, producing diamagnetic and mostly colorless compounds. In aqueous solution an octahedral complex,
is the predominant species.

The ionic radii of zinc and magnesium happen to be nearly identical. Consequently some of the equivalent salts have the same crystal structure, and in other circumstances where ionic radius is a determining factor, the chemistry of zinc has much in common with that of magnesium. Compared to the transition metals, zinc tends to form bonds with a greater degree of covalency. Complexes with N- and S- donors are much more stable. Complexes of zinc are mostly 4- or 6- coordinate, although 5-coordinate complexes are known.

Other oxidation states require unusual physical conditions, and the only positive oxidation states demonstrated are +1 or +2. The volatilization of zinc in combination with zinc chloride at temperatures above 285 °C indicates the formation of Zn
2Cl
2, a zinc compound with a +1 oxidation state. Calculations indicate that a zinc compound with the oxidation state of +4 is unlikely to exist. Zn(III) is predicted to exist in the presence of strongly electronegative trianions; however, there exists some doubt around this possibility.

Zinc(I) compounds

Zinc(I) compounds are very rare. The ion is implicated by the formation of a yellow diamagnetic glass by dissolving metallic zinc in molten ZnCl2. The core would be analogous to the cation present in mercury(I) compounds. The diamagnetic nature of the ion confirms its dimeric structure. The first zinc(I) compound containing the Zn–Zn bond, (η-C5Me5)2Zn2.

Zinc(II) compounds

Sheets of zinc acetate formed by slow evaporation
Zinc acetate, Zn(CH
3CO
2)
2
White lumped powder on a glass plate
Zinc chloride

Binary compounds of zinc are known for most of the metalloids and all the nonmetals except the noble gases. The oxide ZnO is a white powder that is nearly insoluble in neutral aqueous solutions, but is amphoteric, dissolving in both strong basic and acidic solutions. The other chalcogenides (ZnS, ZnSe, and ZnTe) have varied applications in electronics and optics. Pnictogenides (Zn
3N
2
, Zn
3P
2
, Zn
3As
2
and Zn
3Sb
2
), the peroxide (ZnO
2
), the hydride (ZnH
2
), and the carbide (ZnC
2) are also known. Of the four halides, ZnF
2
has the most ionic character, while the others (ZnCl
2
, ZnBr
2
, and ZnI
2
) have relatively low melting points and are considered to have more covalent character.

In weak basic solutions containing Zn
ions, the hydroxide Zn(OH)
2
forms as a white precipitate. In stronger alkaline solutions, this hydroxide is dissolved to form zincates (
). The nitrate Zn(NO3)
2
, chlorate Zn(ClO3)
2
, sulfate ZnSO
4
, phosphate Zn
3(PO4)
2
, molybdate ZnMoO
4
, cyanide Zn(CN)
2
, arsenite Zn(AsO2)
2, arsenate Zn(AsO4)
2·8H
2O and the chromate ZnCrO
4
(one of the few colored zinc compounds) are a few examples of other common inorganic compounds of zinc.

Organozinc compounds are those that contain zinc–carbon covalent bonds. Diethylzinc ((C
2H5)
2Zn
) is a reagent in synthetic chemistry. It was first reported in 1848 from the reaction of zinc and ethyl iodide, and was the first compound known to contain a metal–carbon sigma bond.

Test for zinc

Cobalticyanide paper (Rinnmann's test for Zn) can be used as a chemical indicator for zinc. 4 g of K3Co(CN)6 and 1 g of KClO3 is dissolved on 100 ml of water. Paper is dipped in the solution and dried at 100 °C. One drop of the sample is dropped onto the dry paper and heated. A green disc indicates the presence of zinc.

History

Ancient use

Various isolated examples of the use of impure zinc in ancient times have been discovered. Zinc ores were used to make the zinc–copper alloy brass thousands of years prior to the discovery of zinc as a separate element. Judean brass from the 14th to 10th centuries BC contains 23% zinc.

Knowledge of how to produce brass spread to Ancient Greece by the 7th century BC, but few varieties were made. Ornaments made of alloys containing 80–90% zinc, with lead, iron, antimony, and other metals making up the remainder, have been found that are 2,500 years old. A possibly prehistoric statuette containing 87.5% zinc was found in a Dacian archaeological site.

Strabo writing in the 1st century BC (but quoting a now lost work of the 4th century BC historian Theopompus) mentions "drops of false silver" which when mixed with copper make brass. This may refer to small quantities of zinc that is a by-product of smelting sulfide ores. Zinc in such remnants in smelting ovens was usually discarded as it was thought to be worthless.

The manufacture of brass was known to the Romans by about 30 BC. They made brass by heating powdered calamine (zinc silicate or carbonate), charcoal and copper together in a crucible. The resulting calamine brass was then either cast or hammered into shape for use in weaponry. Some coins struck by Romans in the Christian era are made of what is probably calamine brass.

Large black bowl-shaped bucket on a stand. The bucket has incrustation around its top.
Late Roman brass bucket – the Hemmoorer Eimer from Warstade, Germany, second to third century AD

The oldest known pills were made of the zinc carbonates hydrozincite and smithsonite. The pills were used for sore eyes and were found aboard the Roman ship Relitto del Pozzino, wrecked in 140 BC.

The Berne zinc tablet is a votive plaque dating to Roman Gaul made of an alloy that is mostly zinc.

The Charaka Samhita, thought to have been written between 300 and 500 AD, mentions a metal which, when oxidized, produces pushpanjan, thought to be zinc oxide. Zinc mines at Zawar, near Udaipur in India, have been active since the Mauryan period (c. 322 and 187 BCE). The smelting of metallic zinc here, however, appears to have begun around the 12th century AD. One estimate is that this location produced an estimated million tonnes of metallic zinc and zinc oxide from the 12th to 16th centuries. Another estimate gives a total production of 60,000 tonnes of metallic zinc over this period. The Rasaratna Samuccaya, written in approximately the 13th century AD, mentions two types of zinc-containing ores: one used for metal extraction and another used for medicinal purposes.

Early studies and naming

Zinc was distinctly recognized as a metal under the designation of Yasada or Jasada in the medical Lexicon ascribed to the Hindu king Madanapala (of Taka dynasty) and written about the year 1374. Smelting and extraction of impure zinc by reducing calamine with wool and other organic substances was accomplished in the 13th century in India. The Chinese did not learn of the technique until the 17th century.

Alchemical symbol for the element zinc

Alchemists burned zinc metal in air and collected the resulting zinc oxide on a condenser. Some alchemists called this zinc oxide lana philosophica, Latin for "philosopher's wool", because it collected in wooly tufts, whereas others thought it looked like white snow and named it nix album.

The name of the metal was probably first documented by Paracelsus, a Swiss-born German alchemist, who referred to the metal as "zincum" or "zinken" in his book Liber Mineralium II, in the 16th century. The word is probably derived from the German zinke, and supposedly meant "tooth-like, pointed or jagged" (metallic zinc crystals have a needle-like appearance). Zink could also imply "tin-like" because of its relation to German zinn meaning tin. Yet another possibility is that the word is derived from the Persian word سنگ seng meaning stone. The metal was also called Indian tin, tutanego, calamine, and spinter.

German metallurgist Andreas Libavius received a quantity of what he called "calay" (from the Malay or Hindi word for tin) originating from Malabar off a cargo ship captured from the Portuguese in the year 1596. Libavius described the properties of the sample, which may have been zinc. Zinc was regularly imported to Europe from the Orient in the 17th and early 18th centuries, but was at times very expensive.

Isolation

Picture of an old man head (profile). The man has a long face, short hair and tall forehead.
Andreas Sigismund Marggraf is given credit for first isolating pure zinc

Metallic zinc was isolated in India by 1300 AD. Before it was isolated in Europe, it was imported from India in about 1600 CE. Postlewayt's Universal Dictionary, a contemporary source giving technological information in Europe, did not mention zinc before 1751 but the element was studied before then.

Flemish metallurgist and alchemist P. M. de Respour reported that he had extracted metallic zinc from zinc oxide in 1668. By the start of the 18th century, Étienne François Geoffroy described how zinc oxide condenses as yellow crystals on bars of iron placed above zinc ore that is being smelted. In Britain, John Lane is said to have carried out experiments to smelt zinc, probably at Landore, prior to his bankruptcy in 1726.

In 1738 in Great Britain, William Champion patented a process to extract zinc from calamine in a vertical retort-style smelter. His technique resembled that used at Zawar zinc mines in Rajasthan, but no evidence suggests he visited the Orient. Champion's process was used through 1851.

German chemist Andreas Marggraf normally gets credit for isolating pure metallic zinc in the West, even though Swedish chemist Anton von Swab had distilled zinc from calamine four years previously. In his 1746 experiment, Marggraf heated a mixture of calamine and charcoal in a closed vessel without copper to obtain a metal. This procedure became commercially practical by 1752.

Later work

Painting of a middle-aged man sitting by the table, wearing a wig, black jacket, white shirt and white scarf.
Galvanization was named after Luigi Galvani.

William Champion's brother, John, patented a process in 1758 for calcining zinc sulfide into an oxide usable in the retort process. Prior to this, only calamine could be used to produce zinc. In 1798, Johann Christian Ruberg improved on the smelting process by building the first horizontal retort smelter. Jean-Jacques Daniel Dony built a different kind of horizontal zinc smelter in Belgium that processed even more zinc. Italian doctor Luigi Galvani discovered in 1780 that connecting the spinal cord of a freshly dissected frog to an iron rail attached by a brass hook caused the frog's leg to twitch. He incorrectly thought he had discovered an ability of nerves and muscles to create electricity and called the effect "animal electricity". The galvanic cell and the process of galvanization were both named for Luigi Galvani, and his discoveries paved the way for electrical batteries, galvanization, and cathodic protection.

Galvani's friend, Alessandro Volta, continued researching the effect and invented the Voltaic pile in 1800. Volta's pile consisted of a stack of simplified galvanic cells, each being one plate of copper and one of zinc connected by an electrolyte. By stacking these units in series, the Voltaic pile (or "battery") as a whole had a higher voltage, which could be used more easily than single cells. Electricity is produced because the Volta potential between the two metal plates makes electrons flow from the zinc to the copper and corrode the zinc.

The non-magnetic character of zinc and its lack of color in solution delayed discovery of its importance to biochemistry and nutrition. This changed in 1940 when carbonic anhydrase, an enzyme that scrubs carbon dioxide from blood, was shown to have zinc in its active site. The digestive enzyme carboxypeptidase became the second known zinc-containing enzyme in 1955.

Production

Mining and processing

Top zinc mine production output (by countries) 2023
Rank Country Tonnes
1 China 4,000,000
2 Peru 1,400,000
3 Australia 1,100,000
4 India 860,000
5 United States 750,000
6 Mexico 690,000
Main articles: Zinc mining and Zinc smelting See also: List of countries by zinc production
Price of Zinc
World map revealing that about 40% of zinc is produced in China, 20% in Australia, 20% in Peru, and 5% in US, Canada and Kazakhstan each.
Percentage of zinc output in 2006 by countries
World production trend
Zinc Mine Rosh Pinah, Namibia
27°57′17″S 016°46′00″E / 27.95472°S 16.76667°E / -27.95472; 16.76667 (Rosh Pinah)
Zinc Mine Skorpion, Namibia
27°49′09″S 016°36′28″E / 27.81917°S 16.60778°E / -27.81917; 16.60778 (Skorpion)

Zinc is the fourth most common metal in use, trailing only iron, aluminium, and copper with an annual production of about 13 million tonnes. The world's largest zinc producer is Nyrstar, a merger of the Australian OZ Minerals and the Belgian Umicore. About 70% of the world's zinc originates from mining, while the remaining 30% comes from recycling secondary zinc.

Commercially pure zinc is known as Special High Grade, often abbreviated SHG, and is 99.995% pure.

Worldwide, 95% of new zinc is mined from sulfidic ore deposits, in which sphalerite (ZnS) is nearly always mixed with the sulfides of copper, lead and iron. Zinc mines are scattered throughout the world, with the main areas being China, Australia, and Peru. China produced 38% of the global zinc output in 2014.

Zinc metal is produced using extractive metallurgy. The ore is finely ground, then put through froth flotation to separate minerals from gangue (on the property of hydrophobicity), to get a zinc sulfide ore concentrate consisting of about 50% zinc, 32% sulfur, 13% iron, and 5% SiO
2.

Roasting converts the zinc sulfide concentrate to zinc oxide:

2 ZnS + 3 O 2 t o 2 ZnO + 2 SO 2 {\displaystyle {\ce {2ZnS + 3O2 -> 2ZnO + 2SO2}}}

The sulfur dioxide is used for the production of sulfuric acid, which is necessary for the leaching process. If deposits of zinc carbonate, zinc silicate, or zinc-spinel (like the Skorpion Deposit in Namibia) are used for zinc production, the roasting can be omitted.

For further processing two basic methods are used: pyrometallurgy or electrowinning. Pyrometallurgy reduces zinc oxide with carbon or carbon monoxide at 950 °C (1,740 °F) into the metal, which is distilled as zinc vapor to separate it from other metals, which are not volatile at those temperatures. The zinc vapor is collected in a condenser. The equations below describe this process:

ZnO + C 950 o C Zn + CO {\displaystyle {\ce {ZnO + C -> Zn + CO}}}
ZnO + CO 950 o C Zn + CO 2 {\displaystyle {\ce {ZnO + CO -> Zn + CO2}}}

In electrowinning, zinc is leached from the ore concentrate by sulfuric acid and impurities are precipitated:

ZnO + H 2 SO 4 ZnSO 4 + H 2 O {\displaystyle {\ce {ZnO + H2SO4 -> ZnSO4 + H2O}}}

Finally, the zinc is reduced by electrolysis.

2 ZnSO 4 + 2 H 2 O 2 Zn + O 2 + 2 H 2 SO 4 {\displaystyle {\ce {2ZnSO4 + 2H2O -> 2Zn + O2 + 2H2SO4}}}

The sulfuric acid is regenerated and recycled to the leaching step.

When galvanised feedstock is fed to an electric arc furnace, the zinc is recovered from the dust by a number of processes, predominantly the Waelz process (90% as of 2014).

Environmental impact

Refinement of sulfidic zinc ores produces large volumes of sulfur dioxide and cadmium vapor. Smelter slag and other residues contain significant quantities of metals. About 1.1 million tonnes of metallic zinc and 130 thousand tonnes of lead were mined and smelted in the Belgian towns of La Calamine and Plombières between 1806 and 1882. The dumps of the past mining operations leach zinc and cadmium, and the sediments of the Geul River contain non-trivial amounts of metals. About two thousand years ago, emissions of zinc from mining and smelting totaled 10 thousand tonnes a year. After increasing 10-fold from 1850, zinc emissions peaked at 3.4 million tonnes per year in the 1980s and declined to 2.7 million tonnes in the 1990s, although a 2005 study of the Arctic troposphere found that the concentrations there did not reflect the decline. Man-made and natural emissions occur at a ratio of 20 to 1.

Zinc in rivers flowing through industrial and mining areas can be as high as 20 ppm. Effective sewage treatment greatly reduces this; treatment along the Rhine, for example, has decreased zinc levels to 50 ppb. Concentrations of zinc as low as 2 ppm adversely affects the amount of oxygen that fish can carry in their blood.

A panorama featuring a large industrial plant on a sea side, in front of mountains. Historically responsible for high metal levels in the Derwent River, the zinc works at Lutana is the largest exporter in Tasmania, generating 2.5% of the state's GDP, and producing more than 250,000 tonnes of zinc per year.

Soils contaminated with zinc from mining, refining, or fertilizing with zinc-bearing sludge can contain several grams of zinc per kilogram of dry soil. Levels of zinc in excess of 500 ppm in soil interfere with the ability of plants to absorb other essential metals, such as iron and manganese. Zinc levels of 2000 ppm to 180,000 ppm (18%) have been recorded in some soil samples.

Applications

Major applications of zinc include, with percentages given for the US

  1. Galvanizing (55%)
  2. Brass and bronze (16%)
  3. Other alloys (21%)
  4. Miscellaneous (8%)

Anti-corrosion and batteries

Merged elongated crystals of various shades of gray.
Hot-dip handrail galvanized crystalline surface
Zinc sacrificial anode

Zinc is most commonly used as an anti-corrosion agent, and galvanization (coating of iron or steel) is the most familiar form. In 2009 in the United States, 55% or 893,000 tons of the zinc metal was used for galvanization.

Zinc is more reactive than iron or steel and thus will attract almost all local oxidation until it completely corrodes away. A protective surface layer of oxide and carbonate (Zn
5(OH)
6(CO
3)
2) forms as the zinc corrodes. This protection lasts even after the zinc layer is scratched but degrades through time as the zinc corrodes away. The zinc is applied electrochemically or as molten zinc by hot-dip galvanizing or spraying. Galvanization is used on chain-link fencing, guard rails, suspension bridges, lightposts, metal roofs, heat exchangers, and car bodies.

The relative reactivity of zinc and its ability to attract oxidation to itself makes it an efficient sacrificial anode in cathodic protection (CP). For example, cathodic protection of a buried pipeline can be achieved by connecting anodes made from zinc to the pipe. Zinc acts as the anode (negative terminus) by slowly corroding away as it passes electric current to the steel pipeline. Zinc is also used to cathodically protect metals that are exposed to sea water. A zinc disc attached to a ship's iron rudder will slowly corrode while the rudder stays intact. Similarly, a zinc plug attached to a propeller or the metal protective guard for the keel of the ship provides temporary protection.

With a standard electrode potential (SEP) of −0.76 volts, zinc is used as an anode material for batteries. (More reactive lithium (SEP −3.04 V) is used for anodes in lithium batteries ). Powdered zinc is used in this way in alkaline batteries and the case (which also serves as the anode) of zinc–carbon batteries is formed from sheet zinc. Zinc is used as the anode or fuel of the zinc–air battery/fuel cell. The zinc-cerium redox flow battery also relies on a zinc-based negative half-cell.

Alloys

A widely used zinc alloy is brass, in which copper is alloyed with anywhere from 3% to 45% zinc, depending upon the type of brass. Brass is generally more ductile and stronger than copper, and has superior corrosion resistance. These properties make it useful in communication equipment, hardware, musical instruments, and water valves.

A mosaica pattern composed of components having various shapes and shades of brown.
Cast brass microstructure at magnification 400x

Other widely used zinc alloys include nickel silver, typewriter metal, soft and aluminium solder, and commercial bronze. Zinc is also used in contemporary pipe organs as a substitute for the traditional lead/tin alloy in pipes. Alloys of 85–88% zinc, 4–10% copper, and 2–8% aluminium find limited use in certain types of machine bearings. Zinc has been the primary metal in American one cent coins (pennies) since 1982. The zinc core is coated with a thin layer of copper to give the appearance of a copper coin. In 1994, 33,200 tonnes (36,600 short tons) of zinc were used to produce 13.6 billion pennies in the United States.

Alloys of zinc with small amounts of copper, aluminium, and magnesium are useful in die casting as well as spin casting, especially in the automotive, electrical, and hardware industries. These alloys are marketed under the name Zamak. An example of this is zinc aluminium. The low melting point together with the low viscosity of the alloy makes possible the production of small and intricate shapes. The low working temperature leads to rapid cooling of the cast products and fast production for assembly. Another alloy, marketed under the brand name Prestal, contains 78% zinc and 22% aluminium, and is reported to be nearly as strong as steel but as malleable as plastic. This superplasticity of the alloy allows it to be molded using die casts made of ceramics and cement.

Similar alloys with the addition of a small amount of lead can be cold-rolled into sheets. An alloy of 96% zinc and 4% aluminium is used to make stamping dies for low production run applications for which ferrous metal dies would be too expensive. For building facades, roofing, and other applications for sheet metal formed by deep drawing, roll forming, or bending, zinc alloys with titanium and copper are used. Unalloyed zinc is too brittle for these manufacturing processes.

As a dense, inexpensive, easily worked material, zinc is used as a lead replacement. In the wake of lead concerns, zinc appears in weights for various applications ranging from fishing to tire balances and flywheels.

Cadmium zinc telluride (CZT) is a semiconductive alloy that can be divided into an array of small sensing devices. These devices are similar to an integrated circuit and can detect the energy of incoming gamma ray photons. When behind an absorbing mask, the CZT sensor array can determine the direction of the rays.

Other industrial uses

White powder on a glass plate
Zinc oxide is used as a white pigment in paints.

Roughly one quarter of all zinc output in the United States in 2009 was consumed in zinc compounds; a variety of which are used industrially. Zinc oxide is widely used as a white pigment in paints and as a catalyst in the manufacture of rubber to disperse heat. Zinc oxide is used to protect rubber polymers and plastics from ultraviolet radiation (UV). The semiconductor properties of zinc oxide make it useful in varistors and photocopying products. The zinc zinc-oxide cycle is a two step thermochemical process based on zinc and zinc oxide for hydrogen production.

Zinc chloride is often added to lumber as a fire retardant and sometimes as a wood preservative. It is used in the manufacture of other chemicals. Zinc methyl (Zn(CH3)
2) is used in a number of organic syntheses. Zinc sulfide (ZnS) is used in luminescent pigments such as on the hands of clocks, X-ray and television screens, and luminous paints. Crystals of ZnS are used in lasers that operate in the mid-infrared part of the spectrum. Zinc sulfate is a chemical in dyes and pigments. Zinc pyrithione is used in antifouling paints.

Zinc powder is sometimes used as a propellant in model rockets. When a compressed mixture of 70% zinc and 30% sulfur powder is ignited there is a violent chemical reaction. This produces zinc sulfide, together with large amounts of hot gas, heat, and light.

Zinc sheet metal is used as a durable covering for roofs, walls, and countertops, the last often seen in bistros and oyster bars, and is known for the rustic look imparted by its surface oxidation in use to a blue-gray patina and susceptibility to scratching.


Zn, the most abundant isotope of zinc, is very susceptible to neutron activation, being transmuted into the highly radioactive
Zn, which has a half-life of 244 days and produces intense gamma radiation. Because of this, zinc oxide used in nuclear reactors as an anti-corrosion agent is depleted of
Zn before use, this is called depleted zinc oxide. For the same reason, zinc has been proposed as a salting material for nuclear weapons (cobalt is another, better-known salting material). A jacket of isotopically enriched
Zn would be irradiated by the intense high-energy neutron flux from an exploding thermonuclear weapon, forming a large amount of
Zn significantly increasing the radioactivity of the weapon's fallout. Such a weapon is not known to have ever been built, tested, or used.


Zn is used as a tracer to study how alloys that contain zinc wear out, or the path and the role of zinc in organisms.

Zinc dithiocarbamate complexes are used as agricultural fungicides; these include Zineb, Metiram, Propineb and Ziram. Zinc naphthenate is used as wood preservative. Zinc in the form of ZDDP, is used as an anti-wear additive for metal parts in engine oil.

Organic chemistry

Enantioselective addition of diphenylzinc to an aldehyde

Organozinc chemistry is the science of compounds that contain carbon-zinc bonds, describing the physical properties, synthesis, and chemical reactions. Many organozinc compounds are commercially important. Among important applications are:

  • The Frankland-Duppa Reaction in which an oxalate ester (ROCOCOOR) reacts with an alkyl halide R'X, zinc and hydrochloric acid to form α-hydroxycarboxylic esters RR'COHCOOR
  • Organozincs have similar reactivity to Grignard reagents but are much less nucleophilic, and they are expensive and difficult to handle. Organozincs typically perform nucleophilic addition on electrophiles such as aldehydes, which are then reduced to alcohols. Commercially available diorganozinc compounds include dimethylzinc, diethylzinc and diphenylzinc. Like Grignard reagents, organozincs are commonly produced from organobromine precursors.

Zinc has found many uses in catalysis in organic synthesis including enantioselective synthesis, being a cheap and readily available alternative to precious metal complexes. Quantitative results (yield and enantiomeric excess) obtained with chiral zinc catalysts can be comparable to those achieved with palladium, ruthenium, iridium and others.

Dietary supplement

Zinc gluconate supplement pills
Skeletal chemical formula of a planar compound featuring a Zn atom in the center, symmetrically bonded to four oxygens. Those oxygens are further connected to linear COH chains.
Zinc gluconate is one compound used for the delivery of zinc as a dietary supplement.
See also: Zinc sulfate (medical use) and Zinc gluconate

In most single-tablet, over-the-counter, daily vitamin and mineral supplements, zinc is included in such forms as zinc oxide, zinc acetate, zinc gluconate, or zinc amino acid chelate.

Generally, zinc supplement is recommended where there is high risk of zinc deficiency (such as low and middle income countries) as a preventive measure. Although zinc sulfate is a commonly used zinc form, zinc citrate, gluconate and picolinate may be valid options as well. These forms are better absorbed than zinc oxide.

Gastroenteritis

Zinc is an inexpensive and effective part of treatment of diarrhea among children in the developing world. Zinc becomes depleted in the body during diarrhea and replenishing zinc with a 10- to 14-day course of treatment can reduce the duration and severity of diarrheal episodes and may also prevent future episodes for as long as three months. Gastroenteritis is strongly attenuated by ingestion of zinc, possibly by direct antimicrobial action of the ions in the gastrointestinal tract, or by the absorption of the zinc and re-release from immune cells (all granulocytes secrete zinc), or both.

Common cold

This section is an excerpt from Zinc and the common cold.

Zinc supplements (frequently zinc acetate or zinc gluconate lozenges) are a group of dietary supplements that are commonly used in an attempt to treat the common cold. Evidence suggests that zinc does not prevent colds but may reduce their duration, with minimal or no impact on symptom severity. Adverse effects with zinc supplements by mouth include bad taste and nausea. The intranasal use of zinc-containing nasal sprays has been associated with the loss of the sense of smell; consequently, in June 2009, the United States Food and Drug Administration (USFDA) warned consumers to stop using intranasal zinc.

The human rhinovirus – the most common viral pathogen in humans – is the predominant cause of the common cold. The hypothesized mechanism of action by which zinc reduces the severity and/or duration of cold symptoms is the suppression of nasal inflammation and the direct inhibition of rhinoviral receptor binding and rhinoviral replication in the nasal mucosa.

Weight gain

See also: Zinc deficiency § Appetite

Zinc deficiency may lead to loss of appetite. The use of zinc in the treatment of anorexia has been advocated since 1979. At least 15 clinical trials have shown that zinc improved weight gain in anorexia. A 1994 trial showed that zinc doubled the rate of body mass increase in the treatment of anorexia nervosa. Deficiency of other nutrients such as tyrosine, tryptophan and thiamine could contribute to this phenomenon of "malnutrition-induced malnutrition". A meta-analysis of 33 prospective intervention trials regarding zinc supplementation and its effects on the growth of children in many countries showed that zinc supplementation alone had a statistically significant effect on linear growth and body weight gain, indicating that other deficiencies that may have been present were not responsible for growth retardation.

Other

People taking zinc supplements may slow down the progress to age-related macular degeneration. Zinc supplement is an effective treatment for acrodermatitis enteropathica, a genetic disorder affecting zinc absorption that was previously fatal to affected infants. Zinc deficiency has been associated with major depressive disorder (MDD), and zinc supplements may be an effective treatment. Zinc may help individuals sleep more.

Topical use

Further information: Zinc oxide § Medicine

Topical preparations of zinc include those used on the skin, often in the form of zinc oxide. Zinc oxide is generally recognized by the FDA as safe and effective and is considered a very photo-stable. Zinc oxide is one of the most common active ingredients formulated into a sunscreen to mitigate sunburn. Applied thinly to a baby's diaper area (perineum) with each diaper change, it can protect against diaper rash.

Chelated zinc is used in toothpastes and mouthwashes to prevent bad breath; zinc citrate helps reduce the build-up of calculus (tartar).

Zinc pyrithione is widely included in shampoos to prevent dandruff.

Topical zinc has also been shown to effectively treat, as well as prolong remission in genital herpes.

Biological role

Main article: Zinc in biology

Zinc is an essential trace element for humans. and other animals, for plants and for microorganisms. Zinc is required for the function of over 300 enzymes and 1000 transcription factors, and is stored and transferred in metallothioneins. It is the second most abundant trace metal in humans after iron and it is the only metal which appears in all enzyme classes.

In proteins, zinc ions are often coordinated to the amino acid side chains of aspartic acid, glutamic acid, cysteine and histidine. The theoretical and computational description of this zinc binding in proteins (as well as that of other transition metals) is difficult.

Roughly 2–4 grams of zinc are distributed throughout the human body. Most zinc is in the brain, muscle, bones, kidney, and liver, with the highest concentrations in the prostate and parts of the eye. Semen is particularly rich in zinc, a key factor in prostate gland function and reproductive organ growth.

Zinc homeostasis of the body is mainly controlled by the intestine. Here, ZIP4 and especially TRPM7 were linked to intestinal zinc uptake essential for postnatal survival.

In humans, the biological roles of zinc are ubiquitous. It interacts with "a wide range of organic ligands", and has roles in the metabolism of RNA and DNA, signal transduction, and gene expression. It also regulates apoptosis. A review from 2015 indicated that about 10% of human proteins (~3000) bind zinc, in addition to hundreds more that transport and traffic zinc; a similar in silico study in the plant Arabidopsis thaliana found 2367 zinc-related proteins.

In the brain, zinc is stored in specific synaptic vesicles by glutamatergic neurons and can modulate neuronal excitability. It plays a key role in synaptic plasticity and so in learning. Zinc homeostasis also plays a critical role in the functional regulation of the central nervous system. Dysregulation of zinc homeostasis in the central nervous system that results in excessive synaptic zinc concentrations is believed to induce neurotoxicity through mitochondrial oxidative stress (e.g., by disrupting certain enzymes involved in the electron transport chain, including complex I, complex III, and α-ketoglutarate dehydrogenase), the dysregulation of calcium homeostasis, glutamatergic neuronal excitotoxicity, and interference with intraneuronal signal transduction. L- and D-histidine facilitate brain zinc uptake. SLC30A3 is the primary zinc transporter involved in cerebral zinc homeostasis.

Enzymes

Interconnected stripes, mostly of yellow and blue color with a few red segments.
Ribbon diagram of human carbonic anhydrase II, with zinc atom visible in the center
A twisted band, with one side painted blue and another gray. Its two ends are connected through some chemical species to a green atom (zinc).
Zinc fingers help read DNA sequences.

Zinc is an efficient Lewis acid, making it a useful catalytic agent in hydroxylation and other enzymatic reactions. The metal also has a flexible coordination geometry, which allows proteins using it to rapidly shift conformations to perform biological reactions. Two examples of zinc-containing enzymes are carbonic anhydrase and carboxypeptidase, which are vital to the processes of carbon dioxide (CO
2) regulation and digestion of proteins, respectively.

In vertebrate blood, carbonic anhydrase converts CO
2 into bicarbonate and the same enzyme transforms the bicarbonate back into CO
2 for exhalation through the lungs. Without this enzyme, this conversion would occur about one million times slower at the normal blood pH of 7 or would require a pH of 10 or more. The non-related β-carbonic anhydrase is required in plants for leaf formation, the synthesis of indole acetic acid (auxin) and alcoholic fermentation.

Carboxypeptidase cleaves peptide linkages during digestion of proteins. A coordinate covalent bond is formed between the terminal peptide and a C=O group attached to zinc, which gives the carbon a positive charge. This helps to create a hydrophobic pocket on the enzyme near the zinc, which attracts the non-polar part of the protein being digested.

Signalling

Zinc has been recognized as a messenger, able to activate signalling pathways. Many of these pathways provide the driving force in aberrant cancer growth. They can be targeted through ZIP transporters.

Other proteins

Zinc serves a purely structural role in zinc fingers, twists and clusters. Zinc fingers form parts of some transcription factors, which are proteins that recognize DNA base sequences during the replication and transcription of DNA. Each of the nine or ten Zn
ions in a zinc finger helps maintain the finger's structure by coordinately binding to four amino acids in the transcription factor.

In blood plasma, zinc is bound to and transported by albumin (60%, low-affinity) and transferrin (10%). Because transferrin also transports iron, excessive iron reduces zinc absorption, and vice versa. A similar antagonism exists with copper. The concentration of zinc in blood plasma stays relatively constant regardless of zinc intake. Cells in the salivary gland, prostate, immune system, and intestine use zinc signaling to communicate with other cells.

Zinc may be held in metallothionein reserves within microorganisms or in the intestines or liver of animals. Metallothionein in intestinal cells is capable of adjusting absorption of zinc by 15–40%. However, inadequate or excessive zinc intake can be harmful; excess zinc particularly impairs copper absorption because metallothionein absorbs both metals.

The human dopamine transporter contains a high affinity extracellular zinc binding site which, upon zinc binding, inhibits dopamine reuptake and amplifies amphetamine-induced dopamine efflux in vitro. The human serotonin transporter and norepinephrine transporter do not contain zinc binding sites. Some EF-hand calcium binding proteins such as S100 or NCS-1 are also able to bind zinc ions.

Nutrition

Dietary recommendations

The U.S. Institute of Medicine (IOM) updated Estimated Average Requirements (EARs) and Recommended Dietary Allowances (RDAs) for zinc in 2001. The current EARs for zinc for women and men ages 14 and up is 6.8 and 9.4 mg/day, respectively. The RDAs are 8 and 11 mg/day. RDAs are higher than EARs so as to identify amounts that will cover people with higher than average requirements. RDA for pregnancy is 11 mg/day. RDA for lactation is 12 mg/day. For infants up to 12 months the RDA is 3 mg/day. For children ages 1–13 years the RDA increases with age from 3 to 8 mg/day. As for safety, the IOM sets Tolerable upper intake levels (ULs) for vitamins and minerals when evidence is sufficient. In the case of zinc the adult UL is 40 mg/day including both food and supplements combined (lower for children). Collectively the EARs, RDAs, AIs and ULs are referred to as Dietary Reference Intakes (DRIs).

The European Food Safety Authority (EFSA) refers to the collective set of information as Dietary Reference Values, with Population Reference Intake (PRI) instead of RDA, and Average Requirement instead of EAR. AI and UL are defined the same as in the United States. For people ages 18 and older the PRI calculations are complex, as the EFSA has set higher and higher values as the phytate content of the diet increases. For women, PRIs increase from 7.5 to 12.7 mg/day as phytate intake increases from 300 to 1200 mg/day; for men the range is 9.4 to 16.3 mg/day. These PRIs are higher than the U.S. RDAs. The EFSA reviewed the same safety question and set its UL at 25 mg/day, which is much lower than the U.S. value.

For U.S. food and dietary supplement labeling purposes the amount in a serving is expressed as a percent of Daily Value (%DV). For zinc labeling purposes 100% of the Daily Value was 15 mg, but on May 27, 2016, it was revised to 11 mg. A table of the old and new adult daily values is provided at Reference Daily Intake.

Dietary intake

Several plates full of various cereals, fruits and vegetables on a table.
Foods and seasonings containing zinc

Animal products such as meat, fish, shellfish, fowl, eggs, and dairy contain zinc. The concentration of zinc in plants varies with the level in the soil. With adequate zinc in the soil, the food plants that contain the most zinc are wheat (germ and bran) and various seeds, including sesame, poppy, alfalfa, celery, and mustard. Zinc is also found in beans, nuts, almonds, whole grains, pumpkin seeds, sunflower seeds, and blackcurrant.

Other sources include fortified food and dietary supplements in various forms. A 1998 review concluded that zinc oxide, one of the most common supplements in the United States, and zinc carbonate are nearly insoluble and poorly absorbed in the body. This review cited studies that found lower plasma zinc concentrations in the subjects who consumed zinc oxide and zinc carbonate than in those who took zinc acetate and sulfate salts. For fortification, however, a 2003 review recommended cereals (containing zinc oxide) as a cheap, stable source that is as easily absorbed as the more expensive forms. A 2005 study found that various compounds of zinc, including oxide and sulfate, did not show statistically significant differences in absorption when added as fortificants to maize tortillas.

Deficiency

Main article: Zinc deficiency

Nearly two billion people in the developing world are deficient in zinc. Groups at risk include children in developing countries and elderly with chronic illnesses. In children, it causes an increase in infection and diarrhea and contributes to the death of about 800,000 children worldwide per year. The World Health Organization advocates zinc supplementation for severe malnutrition and diarrhea. Zinc supplements help prevent disease and reduce mortality, especially among children with low birth weight or stunted growth. However, zinc supplements should not be administered alone, because many in the developing world have several deficiencies, and zinc interacts with other micronutrients. While zinc deficiency is usually due to insufficient dietary intake, it can be associated with malabsorption, acrodermatitis enteropathica, chronic liver disease, chronic renal disease, sickle cell disease, diabetes, malignancy, and other chronic illnesses.

In the United States, a federal survey of food consumption determined that for women and men over the age of 19, average consumption was 9.7 and 14.2 mg/day, respectively. For women, 17% consumed less than the EAR, for men 11%. The percentages below EAR increased with age. The most recent published update of the survey (NHANES 2013–2014) reported lower averages – 9.3 and 13.2 mg/day – again with intake decreasing with age.

Symptoms of mild zinc deficiency are diverse. Clinical outcomes include depressed growth, diarrhea, impotence and delayed sexual maturation, alopecia, eye and skin lesions, impaired appetite, altered cognition, impaired immune functions, defects in carbohydrate use, and reproductive teratogenesis. Zinc deficiency depresses immunity, but excessive zinc does also.

Despite some concerns, western vegetarians and vegans do not suffer any more from overt zinc deficiency than meat-eaters. Major plant sources of zinc include cooked dried beans, sea vegetables, fortified cereals, soy foods, nuts, peas, and seeds. However, phytates in many whole-grains and fibers may interfere with zinc absorption and marginal zinc intake has poorly understood effects. The zinc chelator phytate, found in seeds and cereal bran, can contribute to zinc malabsorption. Some evidence suggests that more than the US RDA (8 mg/day for adult women; 11 mg/day for adult men) may be needed in those whose diet is high in phytates, such as some vegetarians. The European Food Safety Authority (EFSA) guidelines attempt to compensate for this by recommending higher zinc intake when dietary phytate intake is greater. These considerations must be balanced against the paucity of adequate zinc biomarkers, and the most widely used indicator, plasma zinc, has poor sensitivity and specificity.

Soil remediation

Species of Calluna, Erica and Vaccinium can grow in zinc-metalliferous soils, because translocation of toxic ions is prevented by the action of ericoid mycorrhizal fungi.

Agriculture

Zinc deficiency appears to be the most common micronutrient deficiency in crop plants; it is particularly common in high-pH soils. Zinc-deficient soil is cultivated in the cropland of about half of Turkey and India, a third of China, and most of Western Australia. Substantial responses to zinc fertilization have been reported in these areas. Plants that grow in soils that are zinc-deficient are more susceptible to disease. Zinc is added to the soil primarily through the weathering of rocks, but humans have added zinc through fossil fuel combustion, mine waste, phosphate fertilizers, pesticide (zinc phosphide), limestone, manure, sewage sludge, and particles from galvanized surfaces. Excess zinc is toxic to plants, although zinc toxicity is far less widespread.

Precautions

Main article: Zinc toxicity

Toxicity

Although zinc is an essential requirement for good health, excess zinc can be harmful. Excessive absorption of zinc suppresses copper and iron absorption. The free zinc ion in solution is highly toxic to plants, invertebrates, and even vertebrate fish. The Free Ion Activity Model is well-established in the literature, and shows that just micromolar amounts of the free ion kills some organisms. A recent example showed 6 micromolar killing 93% of all Daphnia in water.

The free zinc ion is a powerful Lewis acid up to the point of being corrosive. Stomach acid contains hydrochloric acid, in which metallic zinc dissolves readily to give corrosive zinc chloride. Swallowing a post-1982 American one cent piece (97.5% zinc) can cause damage to the stomach lining through the high solubility of the zinc ion in the acidic stomach.

Evidence shows that people taking 100–300 mg of zinc daily may suffer induced copper deficiency. A 2007 trial observed that elderly men taking 80 mg daily were hospitalized for urinary complications more often than those taking a placebo. Levels of 100–300 mg may interfere with the use of copper and iron or adversely affect cholesterol. Zinc in excess of 500 ppm in soil interferes with the plant absorption of other essential metals, such as iron and manganese. A condition called the zinc shakes or "zinc chills" can be induced by inhalation of zinc fumes while brazing or welding galvanized materials. Zinc is a common ingredient of denture cream which may contain between 17 and 38 mg of zinc per gram. Disability and even deaths from excessive use of these products have been claimed.

The U.S. Food and Drug Administration (FDA) states that zinc damages nerve receptors in the nose, causing anosmia. Reports of anosmia were also observed in the 1930s when zinc preparations were used in a failed attempt to prevent polio infections. On June 16, 2009, the FDA ordered removal of zinc-based intranasal cold products from store shelves. The FDA said the loss of smell can be life-threatening because people with impaired smell cannot detect leaking gas or smoke, and cannot tell if food has spoiled before they eat it.

Recent research suggests that the topical antimicrobial zinc pyrithione is a potent heat shock response inducer that may impair genomic integrity with induction of PARP-dependent energy crisis in cultured human keratinocytes and melanocytes.

Poisoning

In 1982, the US Mint began minting pennies coated in copper but containing primarily zinc. Zinc pennies pose a risk of zinc toxicosis, which can be fatal. One reported case of chronic ingestion of 425 pennies (over 1 kg of zinc) resulted in death due to gastrointestinal bacterial and fungal sepsis. Another patient who ingested 12 grams of zinc showed only lethargy and ataxia (gross lack of coordination of muscle movements). Several other cases have been reported of humans suffering zinc intoxication by the ingestion of zinc coins.

Pennies and other small coins are sometimes ingested by dogs, requiring veterinary removal of the foreign objects. The zinc content of some coins can cause zinc toxicity, commonly fatal in dogs through severe hemolytic anemia and liver or kidney damage; vomiting and diarrhea are possible symptoms. Zinc is highly toxic in parrots and poisoning can often be fatal. The consumption of fruit juices stored in galvanized cans has resulted in mass parrot poisonings with zinc.

See also

Notes

  1. The thermal expansion of zinc is anisotropic. The coefficients for each crystal axis are (at 20 °C): αa = 13.06×10/K, αc = 64.12×10/K, and αaverage = αvolume/3 = 30.08×10/K.
  2. The elements are from different metal groups. See periodic table.
  3. An East India Company ship carrying a cargo of nearly pure zinc metal from the Orient sank off the coast Sweden in 1745.(Emsley 2001, p. 502)
  4. Electric current will naturally flow between zinc and steel but in some circumstances inert anodes are used with an external DC source.

References

  1. "Standard Atomic Weights: Zinc". CIAAW. 2007.
  2. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (May 4, 2022). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  3. ^ Arblaster, John W. (2018). Selected Values of the Crystallographic Properties of Elements. Materials Park, Ohio: ASM International. ISBN 978-1-62708-155-9.
  4. Zn(−2) have been observed (as dimeric and monomeric anions; dimeric ions were initially reported to be , but later shown to be for all these elements) in Ca5Zn3 (structure (AE)5(T–T)T⋅4e); see Changhoon Lee; Myung-Hwan Whangbo (2008). "Late transition metal anions acting as p-metal elements". Solid State Sciences. 10 (4): 444–449. Bibcode:2008SSSci..10..444K. doi:10.1016/j.solidstatesciences.2007.12.001. and Changhoon Lee; Myung-Hwan Whangbo; Jürgen Köhler (2010). "Analysis of Electronic Structures and Chemical Bonding of Metal-rich Compounds. 2. Presence of Dimer (T–T) and Isolated T Anions in the Polar Intermetallic Cr5B3-Type Compounds AE5T3 (AE = Ca, Sr; T = Au, Ag, Hg, Cd, Zn)". Zeitschrift für Anorganische und Allgemeine Chemie. 636 (1): 36–40. doi:10.1002/zaac.200900421.
  5. Zn(I) has been reported in decamethyldizincocene; see Resa, I.; Carmona, E.; Gutierrez-Puebla, E.; Monge, A. (2004). "Decamethyldizincocene, a Stable Compound of Zn(I) with a Zn-Zn Bond". Science. 305 (5687): 1136–8. Bibcode:2004Sci...305.1136R. doi:10.1126/science.1101356. PMID 15326350. S2CID 38990338.
  6. Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E110. ISBN 0-8493-0464-4.
  7. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  8. ^ Maret, Wolfgang (2013). "Zinc and Human Disease". In Astrid Sigel; Helmut Sigel; Roland K. O. Sigel (eds.). Interrelations between Essential Metal Ions and Human Diseases. Metal Ions in Life Sciences. Vol. 13. Springer. pp. 389–414. doi:10.1007/978-94-007-7500-8_12. ISBN 978-94-007-7499-5. PMID 24470098.
  9. ^ Prakash A, Bharti K, Majeed AB (April 2015). "Zinc: indications in brain disorders". Fundam Clin Pharmacol. 29 (2): 131–149. doi:10.1111/fcp.12110. PMID 25659970. S2CID 21141511.
  10. ^ Cherasse Y, Urade Y (November 2017). "Dietary Zinc Acts as a Sleep Modulator". International Journal of Molecular Sciences. 18 (11): 2334. doi:10.3390/ijms18112334. PMC 5713303. PMID 29113075. Zinc is the second most abundant trace metal in the human body, and is essential for many biological processes.  ... The trace metal zinc is an essential cofactor for more than 300 enzymes and 1000 transcription factors . ... In the central nervous system, zinc is the second most abundant trace metal and is involved in many processes. In addition to its role in enzymatic activity, it also plays a major role in cell signaling and modulation of neuronal activity.
  11. ^ Prasad A. S. (2008). "Zinc in Human Health: Effect of Zinc on Immune Cells". Mol. Med. 14 (5–6): 353–7. doi:10.2119/2008-00033.Prasad. PMC 2277319. PMID 18385818.
  12. ^ Broadley, M. R.; White, P. J.; Hammond, J. P.; Zelko I.; Lux A. (2007). "Zinc in plants". New Phytologist. 173 (4): 677–702. Bibcode:2007NewPh.173..677B. doi:10.1111/j.1469-8137.2007.01996.x. PMID 17286818.
  13. ^ Zinc's role in microorganisms is particularly reviewed in: Sugarman B (1983). "Zinc and infection". Reviews of Infectious Diseases. 5 (1): 137–47. doi:10.1093/clinids/5.1.137. PMID 6338570.
  14. ^ Hambidge, K. M. & Krebs, N. F. (2007). "Zinc deficiency: a special challenge". J. Nutr. 137 (4): 1101–5. doi:10.1093/jn/137.4.1101. PMID 17374687.
  15. Xiao, Hangfang; Deng, Wenfeng; Wei, Gangjian; Chen, Jiubin; Zheng, Xinqing; Shi, Tuo; Chen, Xuefei; Wang, Chenying; Liu, Xi (October 30, 2020). "A Pilot Study on Zinc Isotopic Compositions in Shallow-Water Coral Skeletons". Geochemistry, Geophysics, Geosystems. 21 (11). Bibcode:2020GGG....2109430X. doi:10.1029/2020GC009430. S2CID 228975484.
  16. ^ Prasad, AS (2003). "Zinc deficiency : Has been known of for 40 years but ignored by global health organisations". British Medical Journal. 326 (7386): 409–410. doi:10.1136/bmj.326.7386.409. PMC 1125304. PMID 12595353.
  17. Maret, Wolfgang (2013). "Zinc and the Zinc Proteome". In Banci, Lucia (ed.). Metallomics and the Cell. Metal Ions in Life Sciences. Vol. 12. Springer. pp. 479–501. doi:10.1007/978-94-007-5561-1_14. ISBN 978-94-007-5561-1. PMID 23595681.
  18. Anglia, University of East. "Zinc vital to evolution of complex life in polar oceans". phys.org. Retrieved September 3, 2023.
  19. Thornton, C. P. (2007). Of brass and bronze in prehistoric Southwest Asia (PDF). Archetype Publications. ISBN 978-1-904982-19-7. Archived (PDF) from the original on September 24, 2015.
  20. ^ Greenwood & Earnshaw 1997, p. 1201
  21. ^ Craddock, Paul T. (1978). "The composition of copper alloys used by the Greek, Etruscan and Roman civilizations. The origins and early use of brass". Journal of Archaeological Science. 5 (1): 1–16. doi:10.1016/0305-4403(78)90015-8.
  22. "Zinc – Royal Society Of Chemistry". Archived from the original on July 11, 2017.
  23. "India Was the First to Smelt Zinc by Distillation Process". Infinityfoundation.com. Archived from the original on May 16, 2016. Retrieved April 25, 2014.
  24. Kharakwal, J. S. & Gurjar, L. K. (December 1, 2006). "Zinc and Brass in Archaeological Perspective". Ancient Asia. 1: 139–159. doi:10.5334/aa.06112.
  25. ^ CRC 2006, p. 4–41
  26. ^ Heiserman 1992, p. 123
  27. Wells A.F. (1984) Structural Inorganic Chemistry 5th edition p 1277 Oxford Science Publications ISBN 0-19-855370-6
  28. Scoffern, John (1861). The Useful Metals and Their Alloys. Houlston and Wright. pp. 591–603. Retrieved April 6, 2009.
  29. ^ "Zinc Metal Properties". American Galvanizers Association. 2008. Archived from the original on March 28, 2015. Retrieved April 7, 2015.
  30. Ingalls, Walter Renton (1902). "Production and Properties of Zinc: A Treatise on the Occurrence and Distribution of Zinc Ore, the Commercial and Technical Conditions Affecting the Production of the Spelter, Its Chemical and Physical Properties and Uses in the Arts, Together with a Historical and Statistical Review of the Industry". The Engineering and Mining Journal: 142–6.
  31. Emsley, John (August 25, 2011). Nature's Building Blocks: An A-Z Guide to the Elements. OUP Oxford. ISBN 978-0-19-960563-7.
  32. Brugger, Joël (July 18, 2018), "Zinc", Encyclopedia of Geochemistry: A Comprehensive Reference Source on the Chemistry of the Earth, Encyclopedia of Earth Sciences Series, Springer, pp. 1521–1524, doi:10.1007/978-3-319-39312-4_212, ISBN 978-3-319-39311-7, retrieved June 21, 2024
  33. Rieuwerts, John (2015). The Elements of Environmental Pollution. London and New York: Earthscan Routledge. p. 286. ISBN 978-0-415-85919-6. OCLC 886492996.
  34. ^ Lehto 1968, p. 822
  35. ^ Greenwood & Earnshaw 1997, p. 1202
  36. ^ Emsley 2001, p. 502
  37. ^ Sai Srujan, A.V (2021). "Mineral Commodity Summaries 2021: Zinc" (PDF). United States Geological Survey. Retrieved June 21, 2021.
  38. Erickson, R. L. (1973). "Crustal Abundance of Elements, and Mineral Reserves and Resources". U.S. Geological Survey Professional Paper (820): 21–25.
  39. "Country Partnership Strategy—Iran: 2011–12". ECO Trade and development bank. Archived from the original on October 26, 2011. Retrieved June 6, 2011.
  40. "IRAN – a growing market with enormous potential". IMRG. July 5, 2010. Archived from the original on February 17, 2013. Retrieved March 3, 2010.
  41. Tolcin, A. C. (2009). "Mineral Commodity Summaries 2009: Zinc" (PDF). United States Geological Survey. Archived (PDF) from the original on July 2, 2016. Retrieved August 4, 2016.
  42. Gordon, R. B.; Bertram, M.; Graedel, T. E. (2006). "Metal stocks and sustainability". Proceedings of the National Academy of Sciences. 103 (5): 1209–14. Bibcode:2006PNAS..103.1209G. doi:10.1073/pnas.0509498103. PMC 1360560. PMID 16432205.
  43. Gerst, Michael (2008). "In-Use Stocks of Metals: Status and Implications". Environmental Science and Technology. 42 (19): 7038–45. Bibcode:2008EnST...42.7038G. doi:10.1021/es800420p. PMID 18939524.
  44. Meylan, Gregoire (2016). "The anthropogenic cycle of zinc: Status quo and perspectives". Resources, Conservation and Recycling. 123: 1–10. doi:10.1016/j.resconrec.2016.01.006.
  45. ^ Alejandro A. Sonzogni (Database Manager), ed. (2008). "Chart of Nuclides". Upton (NY): National Nuclear Data Center, Brookhaven National Laboratory. Archived from the original on May 22, 2008. Retrieved September 13, 2008.
  46. ^ Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties" (PDF). Chinese Physics C. 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001.
  47. Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
  48. CRC 2006, pp. 8–29
  49. Moore, John W.; Hunsberger, Lynn R.; Gammon, Steven D.; Houston Jetzer, Kelly (2022) . Reaction of zinc with iodine (web video). American Chemical Society, Division of Chemical Education – via ChemEdX.
  50. Porter, Frank C. (1994). Corrosion Resistance of Zinc and Zinc Alloys. CRC Press. p. 121. ISBN 978-0-8247-9213-8.
  51. ^ Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils (1985). "Zink". Lehrbuch der Anorganischen Chemie (in German) (91–100 ed.). Walter de Gruyter. pp. 1034–1041. ISBN 978-3-11-007511-3.
  52. Hinds, John Iredelle Dillard (1908). Inorganic Chemistry: With the Elements of Physical and Theoretical Chemistry (2nd ed.). New York: John Wiley & Sons. pp. 506–508.
  53. ^ Greenwood & Earnshaw 1997, p. 1206
  54. ^ Brady, James E.; Humiston, Gerard E.; Heikkinen, Henry (1983). General Chemistry: Principles and Structure (3rd ed.). John Wiley & Sons. p. 671. ISBN 978-0-471-86739-5.
  55. Ritchie, Rob (2004). Chemistry (2nd ed.). Letts and Lonsdale. p. 71. ISBN 978-1-84315-438-9.
  56. Burgess, John (1978). Metal ions in solution. New York: Ellis Horwood. p. 147. ISBN 978-0-470-26293-1.
  57. CRC 2006, pp. 12–11–12
  58. Kaupp M.; Dolg M.; Stoll H.; Von Schnering H. G. (1994). "Oxidation state +IV in group 12 chemistry. Ab initio study of zinc(IV), cadmium(IV), and mercury(IV) fluorides". Inorganic Chemistry. 33 (10): 2122–2131. doi:10.1021/ic00088a012.
  59. Samanta, Devleena; Jena, Puru (2012). "Zn in the +III Oxidation State". Journal of the American Chemical Society. 134 (20): 8400–8403. arXiv:1201.1014. Bibcode:2012JAChS.134.8400S. doi:10.1021/ja3029119. PMID 22559713.
  60. Fang, Hong; Banjade, Huta; Deepika; Jena, Puru (2021). "Realization of the Zn3+ oxidation state". Nanoscale. 13 (33): 14041–14048. doi:10.1039/D1NR02816B. PMID 34477685. S2CID 237400349.
  61. Schlöder, Tobias; et al. (2012). "Can Zinc Really Exist in Its Oxidation State +III?". Journal of the American Chemical Society. 134 (29): 11977–11979. Bibcode:2012JAChS.13411977S. doi:10.1021/ja3052409. PMID 22775535.
  62. Housecroft, C. E.; Sharpe, A. G. (2008). Inorganic Chemistry (3rd ed.). Prentice Hall. p. 739–741, 843. ISBN 978-0-13-175553-6.
  63. "Zinc Sulfide". American Elements. Archived from the original on July 17, 2012. Retrieved February 3, 2009.
  64. Academic American Encyclopedia. Danbury, Connecticut: Grolier Inc. 1994. p. 202. ISBN 978-0-7172-2053-3.
  65. "Zinc Phosphide". American Elements. Archived from the original on July 17, 2012. Retrieved February 3, 2009.
  66. Shulzhenko AA, Ignatyeva IY, Osipov AS, Smirnova TI (2000). "Peculiarities of interaction in the Zn–C system under high pressures and temperatures". Diamond and Related Materials. 9 (2): 129–133. Bibcode:2000DRM.....9..129S. doi:10.1016/S0925-9635(99)00231-9.
  67. Greenwood & Earnshaw 1997, p. 1211
  68. Rasmussen, J. K.; Heilmann, S. M. (1990). "In situ Cyanosilylation of Carbonyl Compounds: O-Trimethylsilyl-4-Methoxymandelonitrile". Organic Syntheses, Collected Volume. 7: 521. Archived from the original on September 30, 2007.
  69. Perry, D. L. (1995). Handbook of Inorganic Compounds. CRC Press. pp. 448–458. ISBN 978-0-8493-8671-8.
  70. Frankland, E. (1850). "On the isolation of the organic radicals". Quarterly Journal of the Chemical Society. 2 (3): 263. doi:10.1039/QJ8500200263.
  71. Lide, David (1998). CRC- Handbook of Chemistry and Physics. CRC press. pp. Section 8 Page 1. ISBN 978-0-8493-0479-8.
  72. Weeks 1933, p. 20
  73. Craddock, P. T. (1998). "Zinc in classical antiquity". In Craddock, P.T. (ed.). 2000 years of zinc and brass (rev. ed.). London: British Museum. pp. 3–5. ISBN 978-0-86159-124-4.
  74. ^ Weeks 1933, p. 21
  75. ^ Emsley 2001, p. 501
  76. "How is zinc made?". How Products are Made. The Gale Group. 2002. Archived from the original on April 11, 2006. Retrieved February 21, 2009.
  77. Chambers 1901, p. 799
  78. "World's oldest pills treated sore eyes". New Scientist. January 7, 2013. Archived from the original on January 22, 2013. Retrieved February 5, 2013.
  79. Giachi, Gianna; Pallecchi, Pasquino; Romualdi, Antonella; Ribechini, Erika; Lucejko, Jeannette Jacqueline; Colombini, Maria Perla; Mariotti Lippi, Marta (2013). "Ingredients of a 2,000-y-old medicine revealed by chemical, mineralogical, and botanical investigations". Proceedings of the National Academy of Sciences. 110 (4): 1193–1196. Bibcode:2013PNAS..110.1193G. doi:10.1073/pnas.1216776110. PMC 3557061. PMID 23297212.
  80. Rehren, Th. (1996). S. Demirci; et al. (eds.). A Roman zinc tablet from Bern, Switzerland: Reconstruction of the Manufacture. Archaeometry 94. The Proceedings of the 29th International Symposium on Archaeometry. pp. 35–45.
  81. Meulenbeld, G. J. (1999). A History of Indian Medical Literature. Vol. IA. Groningen: Forsten. pp. 130–141. OCLC 165833440.
  82. Craddock, P. T.; et al. (1998). "Zinc in India". 2000 years of zinc and brass (rev. ed.). London: British Museum. p. 27. ISBN 978-0-86159-124-4.
  83. ^ p. 46, Ancient mining and metallurgy in Rajasthan, S. M. Gandhi, chapter 2 in Crustal Evolution and Metallogeny in the Northwestern Indian Shield: A Festschrift for Asoke Mookherjee, M. Deb, ed., Alpha Science Int'l Ltd., 2000, ISBN 1-84265-001-7.
  84. ^ Craddock, P. T.; Gurjar L. K.; Hegde K. T. M. (1983). "Zinc production in medieval India". World Archaeology. 15 (2): 211–217. doi:10.1080/00438243.1983.9979899. JSTOR 124653.
  85. Ray, Prafulla Chandra (1903). A History of Hindu Chemistry from the Earliest Times to the Middle of the Sixteenth Century, A.D.: With Sanskrit Texts, Variants, Translation and Illustrations. Vol. 1 (2nd ed.). The Bengal Chemical & Pharmaceutical Works, Ltd. pp. 157–158. (public domain text)
  86. ^ Habashi, Fathi. "Discovering the 8th Metal" (PDF). International Zinc Association (IZA). Archived from the original (PDF) on March 4, 2009. Retrieved December 13, 2008.
  87. Arny, Henry Vinecome (1917). Principles of Pharmacy (2nd ed.). W. B. Saunders company. p. 483.
  88. Hoover, Herbert Clark (2003). Georgius Agricola de Re Metallica. Kessinger Publishing. p. 409. ISBN 978-0-7661-3197-2.
  89. Gerhartz, Wolfgang; et al. (1996). Ullmann's Encyclopedia of Industrial Chemistry (5th ed.). VHC. p. 509. ISBN 978-3-527-20100-6.
  90. Skeat, W. W (2005). Concise Etymological Dictionary of the English Language. Cosimo, Inc. p. 622. ISBN 978-1-59605-092-1.
  91. Fathi Habashi (1997). Handbook of Extractive Metallurgy. Wiley-VHC. p. 642. ISBN 978-3-527-28792-5.
  92. Lach, Donald F. (1994). "Technology and the Natural Sciences". Asia in the Making of Europe. University of Chicago Press. p. 426. ISBN 978-0-226-46734-4.
  93. Vaughan, L Brent (1897). "Zincography". The Junior Encyclopedia Britannica A Reference Library of General Knowledge Volume III P-Z. Chicago: E. G. Melven & Company.
  94. Castellani, Michael. "Transition Metal Elements" (PDF). Archived (PDF) from the original on October 10, 2014. Retrieved October 14, 2014.
  95. Habib, Irfan (2011). Chatopadhyaya, D. P. (ed.). Economic History of Medieval India, 1200–1500. New Delhi: Pearson Longman. p. 86. ISBN 978-81-317-2791-1. Archived from the original on April 14, 2016.
  96. ^ Jenkins, Rhys (1945). "The Zinc Industry in England: the early years up to 1850". Transactions of the Newcomen Society. 25: 41–52. doi:10.1179/tns.1945.006.
  97. Willies, Lynn; Craddock, P. T.; Gurjar, L. J.; Hegde, K. T. M. (1984). "Ancient Lead and Zinc Mining in Rajasthan, India". World Archaeology. 16 (2, Mines and Quarries): 222–233. doi:10.1080/00438243.1984.9979929. JSTOR 124574.
  98. Roberts, R. O. (1951). "Dr John Lane and the foundation of the non-ferrous metal industry in the Swansea valley". Gower (4). Gower Society: 19.
  99. Comyns, Alan E. (2007). Encyclopedic Dictionary of Named Processes in Chemical Technology (3rd ed.). CRC Press. p. 71. ISBN 978-0-8493-9163-7.
  100. Marggraf (1746). "Experiences sur la maniere de tirer le Zinc de sa veritable miniere, c'est à dire, de la pierre calaminaire" [Experiments on a way of extracting zinc from its true mineral; i.e., the stone calamine]. Histoire de l'Académie Royale des Sciences et Belles-Lettres de Berlin (in French). 2: 49–57.
  101. Heiserman 1992, p. 122
  102. Gray, Leon (2005). Zinc. Marshall Cavendish. p. 8. ISBN 978-0-7614-1922-8.
  103. ^ Warren, Neville G. (2000). Excel Preliminary Physics. Pascal Press. p. 47. ISBN 978-1-74020-085-1.
  104. ^ "Galvanic Cell". The New International Encyclopaedia. Dodd, Mead and Company. 1903. p. 80.
  105. ^ Cotton et al. 1999, p. 626
  106. Mineral Commodity Summaries 2024
  107. Jasinski, Stephen M. "Mineral Commodity Summaries 2007: Zinc" (PDF). United States Geological Survey. Archived (PDF) from the original on December 17, 2008. Retrieved November 25, 2008.
  108. Attwood, James (February 13, 2006). "Zinifex, Umicore Combine to Form Top Zinc Maker". The Wall Street Journal. Archived from the original on January 26, 2017.
  109. "Zinc Recycling". International Zinc Association. Archived from the original on October 21, 2011. Retrieved November 28, 2008.
  110. "Special High Grade Zinc (SHG) 99.995%" (PDF). Nyrstar. 2008. Archived from the original (PDF) on March 4, 2009. Retrieved December 1, 2008.
  111. ^ Porter, Frank C. (1991). Zinc Handbook. CRC Press. ISBN 978-0-8247-8340-2.
  112. ^ Rosenqvist, Terkel (1922). Principles of Extractive Metallurgy (2nd ed.). Tapir Academic Press. pp. 7, 16, 186. ISBN 978-82-519-1922-7.
  113. Borg, Gregor; Kärner, Katrin; Buxton, Mike; Armstrong, Richard; van der Merwe, Schalk W. (2003). "Geology of the Skorpion Supergene Zinc Deposit, Southern Namibia". Economic Geology. 98 (4): 749–771. doi:10.2113/98.4.749.
  114. Bodsworth, Colin (1994). The Extraction and Refining of Metals. CRC Press. p. 148. ISBN 978-0-8493-4433-6.
  115. Gupta, C. K.; Mukherjee, T. K. (1990). Hydrometallurgy in Extraction Processes. CRC Press. p. 62. ISBN 978-0-8493-6804-2.
  116. Antrekowitsch, Jürgen; Steinlechner, Stefan; Unger, Alois; Rösler, Gernot; Pichler, Christoph; Rumpold, Rene (2014), "9. Zinc and Residue Recycling", in Worrell, Ernst; Reuter, Markus (eds.), Handbook of Recycling: State-of-the-art for Practitioners, Analysts, and Scientists
  117. ^ Kucha, H.; Martens, A.; Ottenburgs, R.; De Vos, W.; Viaene, W. (1996). "Primary minerals of Zn-Pb mining and metallurgical dumps and their environmental behavior at Plombières, Belgium". Environmental Geology. 27 (1): 1–15. Bibcode:1996EnGeo..27....1K. doi:10.1007/BF00770598. S2CID 129717791.
  118. ^ Emsley 2001, p. 504
  119. Heath, Alan G. (1995). Water pollution and fish physiology. Boca Raton, Florida: CRC Press. p. 57. ISBN 978-0-87371-632-1.
  120. "Derwent Estuary – Water Quality Improvement Plan for Heavy Metals". Derwent Estuary Program. June 2007. Archived from the original on March 21, 2012. Retrieved July 11, 2009.
  121. "The Zinc Works". TChange. Archived from the original on April 27, 2009. Retrieved July 11, 2009.
  122. ^ "Zinc: World Mine Production (zinc content of concentrate) by Country" (PDF). 2009 Minerals Yearbook: Zinc. Washington, D.C.: United States Geological Survey. February 2010. Archived (PDF) from the original on June 8, 2011. Retrieved June 6, 2001.
  123. Greenwood & Earnshaw 1997, p. 1203
  124. ^ Stwertka 1998, p. 99
  125. ^ Lehto 1968, p. 829
  126. ^ Emsley 2001, p. 503
  127. Bounoughaz, M.; Salhi, E.; Benzine, K.; Ghali E.; Dalard F. (2003). "A comparative study of the electrochemical behaviour of Algerian zinc and a zinc from a commercial sacrificial anode". Journal of Materials Science. 38 (6): 1139–1145. Bibcode:2003JMatS..38.1139B. doi:10.1023/A:1022824813564. S2CID 135744939.
  128. Besenhard, Jürgen O. (1999). Handbook of Battery Materials. Wiley-VCH. Bibcode:1999hbm..book.....B. ISBN 978-3-527-29469-5.
  129. Wiaux, J.-P.; Waefler, J. -P. (1995). "Recycling zinc batteries: an economical challenge in consumer waste management". Journal of Power Sources. 57 (1–2): 61–65. Bibcode:1995JPS....57...61W. doi:10.1016/0378-7753(95)02242-2.
  130. Culter, T. (1996). "A design guide for rechargeable zinc–air battery technology". Southcon/96. Conference Record. p. 616. doi:10.1109/SOUTHC.1996.535134. ISBN 978-0-7803-3268-3. S2CID 106826667.
  131. Whartman, Jonathan; Brown, Ian. "Zinc Air Battery-Battery Hybrid for Powering Electric Scooters and Electric Buses" (PDF). The 15th International Electric Vehicle Symposium. Archived from the original (PDF) on March 12, 2006. Retrieved October 8, 2008.
  132. Cooper, J. F.; Fleming, D.; Hargrove, D.; Koopman, R.; Peterman, K (1995). "A refuelable zinc/air battery for fleet electric vehicle propulsion". NASA Sti/Recon Technical Report N. 96. Society of Automotive Engineers future transportation technology conference and exposition: 11394. Bibcode:1995STIN...9611394C. OSTI 82465.
  133. Xie, Z.; Liu, Q.; Chang, Z.; Zhang, X. (2013). "The developments and challenges of cerium half-cell in zinc–cerium redox flow battery for energy storage". Electrochimica Acta. 90: 695–704. doi:10.1016/j.electacta.2012.12.066.
  134. Bush, Douglas Earl; Kassel, Richard (2006). The Organ: An Encyclopedia. Routledge. p. 679. ISBN 978-0-415-94174-7.
  135. "Coin Specifications". United States Mint. Archived from the original on February 18, 2015. Retrieved October 8, 2008.
  136. Jasinski, Stephen M. "Mineral Yearbook 1994: Zinc" (PDF). United States Geological Survey. Archived (PDF) from the original on October 29, 2008. Retrieved November 13, 2008.
  137. "Diecasting Alloys". Maybrook, NY: Eastern Alloys. Archived from the original on December 25, 2008. Retrieved January 19, 2009.
  138. Apelian, D.; Paliwal, M.; Herrschaft, D. C. (1981). "Casting with Zinc Alloys". Journal of Metals. 33 (11): 12–19. Bibcode:1981JOM....33k..12A. doi:10.1007/bf03339527.
  139. Davies, Geoff (2003). Materials for automobile bodies. Butterworth-Heinemann. p. 157. ISBN 978-0-7506-5692-4.
  140. Samans, Carl Hubert (1949). Engineering Metals and Their Alloys. Macmillan Co.
  141. ^ Porter, Frank (1994). "Wrought Zinc". Corrosion Resistance of Zinc and Zinc Alloys. CRC Press. pp. 6–7. ISBN 978-0-8247-9213-8.
  142. McClane, Albert Jules & Gardner, Keith (1987). The Complete book of fishing: a guide to freshwater, saltwater & big-game fishing. Gallery Books. ISBN 978-0-8317-1565-6. Archived from the original on November 15, 2012. Retrieved June 26, 2012.
  143. "Cast flywheel on old Magturbo trainer has been recalled since July 2000". Minoura. Archived from the original on March 23, 2013.
  144. ^ Katz, Johnathan I. (2002). The Biggest Bangs. Oxford University Press. p. 18. ISBN 978-0-19-514570-0.
  145. Zhang, Xiaoge Gregory (1996). Corrosion and Electrochemistry of Zinc. Springer. p. 93. ISBN 978-0-306-45334-2.
  146. Weimer, Al (May 17, 2006). "Development of Solar-powered Thermochemical Production of Hydrogen from Water" (PDF). U.S. Department of Energy. Archived (PDF) from the original on February 5, 2009. Retrieved January 10, 2009.
  147. ^ Heiserman 1992, p. 124
  148. Blew, Joseph Oscar (1953). "Wood preservatives" (PDF). Department of Agriculture, Forest Service, Forest Products Laboratory. hdl:1957/816. Archived (PDF) from the original on January 14, 2012.
  149. Frankland, Edward (1849). "Notiz über eine neue Reihe organischer Körper, welche Metalle, Phosphor u. s. w. enthalten". Liebig's Annalen der Chemie und Pharmacie (in German). 71 (2): 213–216. doi:10.1002/jlac.18490710206.
  150. ^ CRC 2006, p. 4-42
  151. Paschotta, Rüdiger (2008). Encyclopedia of Laser Physics and Technology. Wiley-VCH. p. 798. ISBN 978-3-527-40828-3.
  152. Konstantinou, I. K.; Albanis, T. A. (2004). "Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review". Environment International. 30 (2): 235–248. Bibcode:2004EnInt..30..235K. doi:10.1016/S0160-4120(03)00176-4. PMID 14749112.
  153. ^ Boudreaux, Kevin A. "Zinc + Sulfur". Angelo State University. Archived from the original on December 2, 2008. Retrieved October 8, 2008.
  154. "Rolled and Titanium Zinc Sheet". Retrieved October 21, 2022.
  155. "Things You Should Know About Zinc Countertops". August 4, 2017. Retrieved October 21, 2022.
  156. "Guide to Zinc Countertops: Benefits of Zinc Kitchen Counters". Retrieved October 21, 2022.
  157. "Technical Information". Zinc Counters. 2008. Archived from the original on November 21, 2008. Retrieved November 29, 2008.
  158. ^ Win, David Tin; Masum, Al (2003). "Weapons of Mass Destruction" (PDF). Assumption University Journal of Technology. 6 (4). Assumption University: 199. Archived (PDF) from the original on March 26, 2009. Retrieved April 6, 2009.
  159. David E. Newton (1999). Chemical Elements: From Carbon to Krypton. U. X. L. /Gale. ISBN 978-0-7876-2846-8. Archived from the original on July 10, 2008. Retrieved April 6, 2009.
  160. Ullmann's Agrochemicals. Wiley-Vch (COR). 2007. pp. 591–592. ISBN 978-3-527-31604-5.
  161. Walker, J. C. F. (2006). Primary Wood Processing: Principles and Practice. Springer. p. 317. ISBN 978-1-4020-4392-5.
  162. "ZDDP Engine Oil – The Zinc Factor". Mustang Monthly. Archived from the original on September 12, 2009. Retrieved September 19, 2009.
  163. Kim, Jeung Gon; Walsh, Patrick J. (2006). "From Aryl Bromides to Enantioenriched Benzylic Alcohols in a Single Flask: Catalytic Asymmetric Arylation of Aldehydes". Angewandte Chemie International Edition. 45 (25): 4175–4178. doi:10.1002/anie.200600741. PMID 16721894.
  164. Overman, Larry E.; Carpenter, Nancy E. (2005). The Allylic Trihaloacetimidate Rearrangement. Organic Reactions. Vol. 66. pp. 1–107. doi:10.1002/0471264180.or066.01. ISBN 978-0-471-26418-7.
  165. Rappoport, Zvi; Marek, Ilan (December 17, 2007). The Chemistry of Organozinc Compounds: R-Zn. John Wiley & Sons. ISBN 978-0-470-09337-5. Archived from the original on April 14, 2016.
  166. Knochel, Paul; Jones, Philip (1999). Organozinc reagents: A practical approach. Oxford University Press. ISBN 978-0-19-850121-3. Archived from the original on April 14, 2016.
  167. Herrmann, Wolfgang A. (January 2002). Synthetic Methods of Organometallic and Inorganic Chemistry: Catalysis. Georg Thieme Verlag. ISBN 978-3-13-103061-0. Archived from the original on April 14, 2016.
  168. E. Frankland, Ann. 126, 109 (1863)
  169. E. Frankland, B. F. Duppa, Ann. 135, 25 (1865)
  170. Łowicki, Daniel; Baś, Sebastian; Mlynarski, Jacek (2015). "Chiral zinc catalysts for asymmetric synthesis". Tetrahedron. 71 (9): 1339–1394. doi:10.1016/j.tet.2014.12.022.
  171. DiSilvestro, Robert A. (2004). Handbook of Minerals as Nutritional Supplements. CRC Press. pp. 135, 155. ISBN 978-0-8493-1652-4.
  172. Sanchez, Juliana (February 13, 2013). Zinc Sulphate vs. Zinc Amino Acid Chelate (ZAZO) (Report). USA Government. NCT01791608. Retrieved April 6, 2022 – via U.S. National Library of Medecine.
  173. Mayo-Wilson, E; Junior, JA; Imdad, A; Dean, S; Chan, XH; Chan, ES; Jaswal, A; Bhutta, ZA (May 15, 2014). "Zinc supplementation for preventing mortality, morbidity, and growth failure in children aged 6 months to 12 years of age". The Cochrane Database of Systematic Reviews (5): CD009384. doi:10.1002/14651858.CD009384.pub2. PMID 24826920.
  174. Santos HO, Teixeira FJ, Schoenfeld BJ (2019). "Dietary vs. pharmacological doses of zinc: A clinical review". Clin Nutr. 130 (5): 1345–1353. doi:10.1016/j.clnu.2019.06.024. PMID 31303527. S2CID 196616666.
  175. Bhutta ZA, Bird SM, Black RE, Brown KH, Gardner JM, Hidayat A, Khatun F, Martorell R, et al. (2000). "Therapeutic effects of oral zinc in acute and persistent diarrhea in children in developing countries: pooled analysis of randomized controlled trials". The American Journal of Clinical Nutrition. 72 (6): 1516–1522. doi:10.1093/ajcn/72.6.1516. PMID 11101480.
  176. Aydemir, T. B.; Blanchard, R. K.; Cousins, R. J. (2006). "Zinc supplementation of young men alters metallothionein, zinc transporter, and cytokine gene expression in leukocyte populations". PNAS. 103 (6): 1699–704. Bibcode:2006PNAS..103.1699A. doi:10.1073/pnas.0510407103. PMC 1413653. PMID 16434472.
  177. Valko, M.; Morris, H.; Cronin, M. T. D. (2005). "Metals, Toxicity and Oxidative stress" (PDF). Current Medicinal Chemistry. 12 (10): 1161–208. doi:10.2174/0929867053764635. PMID 15892631. Archived from the original (PDF) on August 8, 2017.
  178. ^ "Zinc – Fact Sheet for Health Professionals". Office of Dietary Supplements, US National Institutes of Health. February 11, 2016. Retrieved January 7, 2018.
  179. Nault D, Machingo TA, Shipper AG, Antiporta DA, Hamel C, Nourouzpour S, Konstantinidis M, Phillips E, Lipski EA, Wieland LS (May 2024). "Zinc for prevention and treatment of the common cold". Cochrane Database Syst Rev (Systematic review). 2024 (5): CD014914. doi:10.1002/14651858.CD014914.pub2. PMC 11078591. PMID 38719213.
  180. Hemilä H, Chalker E, Tukiainen J (2022). "Quantile Treatment Effect of Zinc Lozenges on Common Cold Duration: A Novel Approach to Analyze the Effect of Treatment on Illness Duration". Frontiers in Pharmacology. 13: 817522. doi:10.3389/fphar.2022.817522. PMC 8844493. PMID 35177991.
  181. "Common Cold and Runny Nose". United States Centers for Disease Control and Prevention. September 26, 2017. Retrieved January 7, 2018.
  182. Suzuki H, Asakawa A, Li JB, Tsai M, Amitani H, Ohinata K, Komai M, Inui A (2011). "Zinc as an appetite stimulator – the possible role of zinc in the progression of diseases such as cachexia and sarcopenia". Recent Patents on Food, Nutrition & Agriculture. 3 (3): 226–231. doi:10.2174/2212798411103030226. PMID 21846317.
  183. Shay, Neil F.; Mangian, Heather F. (2000). "Neurobiology of Zinc-Influenced Eating Behavior". The Journal of Nutrition. 130 (5): 1493S – 1499S. doi:10.1093/jn/130.5.1493S. PMID 10801965.
  184. Rabinovich D, Smadi Y (2019). "Zinc". StatPearls . PMID 31613478.
  185. Evans JR, Lawrenson JG (September 13, 2023). "Antioxidant vitamin and mineral supplements for slowing the progression of age-related macular degeneration". Cochrane Database Syst Rev. 2023 (9): CD000254. doi:10.1002/14651858.CD000254.pub5. PMC 10498493. PMID 37702300.
  186. Swardfager W, Herrmann N, McIntyre RS, Mazereeuw G, Goldberger K, Cha DS, Schwartz Y, Lanctôt KL (June 2013). "Potential roles of zinc in the pathophysiology and treatment of major depressive disorder". Neurosci. Biobehav. Rev. 37 (5): 911–929. doi:10.1016/j.neubiorev.2013.03.018. PMID 23567517. S2CID 1725139.
  187. Research, Center for Drug Evaluation and (November 16, 2021). "Questions and Answers: FDA posts deemed final order and proposed order for over-the-counter sunscreen". FDA.
  188. Chauhan, Ravi; Kumar, Amit; Tripathi, Ramna; Kumar, Akhilesh (2021), Mallakpour, Shadpour; Hussain, Chaudhery Mustansar (eds.), "Advancing of Zinc Oxide Nanoparticles for Cosmetic Applications", Handbook of Consumer Nanoproducts, Singapore: Springer, pp. 1–16, doi:10.1007/978-981-15-6453-6_100-1, ISBN 978-981-15-6453-6, S2CID 245778598
  189. Roldán, S.; Winkel, E. G.; Herrera, D.; Sanz, M.; Van Winkelhoff, A. J. (2003). "The effects of a new mouthrinse containing chlorhexidine, cetylpyridinium chloride and zinc lactate on the microflora of oral halitosis patients: a dual-centre, double-blind placebo-controlled study". Journal of Clinical Periodontology. 30 (5): 427–434. doi:10.1034/j.1600-051X.2003.20004.x. PMID 12716335.
  190. "Toothpastes". www.ada.org. Archived from the original on March 5, 2016. Retrieved September 27, 2020.
  191. Marks, R.; Pearse, A. D.; Walker, A. P. (1985). "The effects of a shampoo containing zinc pyrithione on the control of dandruff". British Journal of Dermatology. 112 (4): 415–422. doi:10.1111/j.1365-2133.1985.tb02314.x. PMID 3158327. S2CID 23368244.
  192. Mahajan, BB; Dhawan, M; Singh, R (January 2013). "Herpes genitalis – Topical zinc sulfate: An alternative therapeutic and modality". Indian Journal of Sexually Transmitted Diseases and AIDS. 34 (1): 32–4. doi:10.4103/0253-7184.112867. PMC 3730471. PMID 23919052.
  193. Cotton et al. 1999, pp. 625–629
  194. Plum, Laura; Rink, Lothar; Haase, Hajo (2010). "The Essential Toxin: Impact of Zinc on Human Health". Int J Environ Res Public Health. 7 (4): 1342–1365. doi:10.3390/ijerph7041342. PMC 2872358. PMID 20617034.
  195. Brandt, Erik G.; Hellgren, Mikko; Brinck, Tore; Bergman, Tomas; Edholm, Olle (2009). "Molecular dynamics study of zinc binding to cysteines in a peptide mimic of the alcohol dehydrogenase structural zinc site". Phys. Chem. Chem. Phys. 11 (6): 975–83. Bibcode:2009PCCP...11..975B. doi:10.1039/b815482a. PMID 19177216.
  196. ^ Rink, L.; Gabriel P. (2000). "Zinc and the immune system". Proc Nutr Soc. 59 (4): 541–52. doi:10.1017/S0029665100000781. PMID 11115789.
  197. Wapnir, Raul A. (1990). Protein Nutrition and Mineral Absorption. Boca Raton, Florida: CRC Press. ISBN 978-0-8493-5227-0.
  198. Berdanier, Carolyn D.; Dwyer, Johanna T.; Feldman, Elaine B. (2007). Handbook of Nutrition and Food. Boca Raton, Florida: CRC Press. ISBN 978-0-8493-9218-4.
  199. Mittermeier, Lorenz; Gudermann, Thomas; Zakharian, Eleonora; Simmons, David G.; Braun, Vladimir; Chubanov, Masayuki; Hilgendorff, Anne; Recordati, Camilla; Breit, Andreas (February 15, 2019). "TRPM7 is the central gatekeeper of intestinal mineral absorption essential for postnatal survival". Proceedings of the National Academy of Sciences. 116 (10): 4706–4715. Bibcode:2019PNAS..116.4706M. doi:10.1073/pnas.1810633116. ISSN 0027-8424. PMC 6410795. PMID 30770447.
  200. Kasana, Shakhenabat; Din, Jamila; Maret, Wolfgang (January 2015). "Genetic causes and gene–nutrient interactions in mammalian zinc deficiencies: acrodermatitis enteropathica and transient neonatal zinc deficiency as examples". Journal of Trace Elements in Medicine and Biology. 29: 47–62. Bibcode:2015JTEMB..29...47K. doi:10.1016/j.jtemb.2014.10.003. ISSN 1878-3252. PMID 25468189.
  201. Djoko KY, Ong CL, Walker MJ, McEwan AG (July 2015). "The Role of Copper and Zinc Toxicity in Innate Immune Defense against Bacterial Pathogens". The Journal of Biological Chemistry. 290 (31): 18954–61. doi:10.1074/jbc.R115.647099. PMC 4521016. PMID 26055706. Zn is present in up to 10% of proteins in the human proteome and computational analysis predicted that ~30% of these ~3000 Zn-containing proteins are crucial cellular enzymes, such as hydrolases, ligases, transferases, oxidoreductases, and isomerases (42,43).
  202. ^ Bitanihirwe BK, Cunningham MG (November 2009). "Zinc: the brain's dark horse". Synapse. 63 (11): 1029–1049. doi:10.1002/syn.20683. PMID 19623531. S2CID 206520330.
  203. Nakashima AS; Dyck RH (2009). "Zinc and cortical plasticity". Brain Res Rev. 59 (2): 347–73. doi:10.1016/j.brainresrev.2008.10.003. PMID 19026685. S2CID 22507338.
  204. Tyszka-Czochara M, Grzywacz A, Gdula-Argasińska J, Librowski T, Wiliński B, Opoka W (May 2014). "The role of zinc in the pathogenesis and treatment of central nervous system (CNS) diseases. Implications of zinc homeostasis for proper CNS function" (PDF). Acta Pol. Pharm. 71 (3): 369–377. PMID 25265815. Archived (PDF) from the original on August 29, 2017.
  205. Yokel, R. A. (2006). "Blood-brain barrier flux of aluminum, manganese, iron and other metals suspected to contribute to metal-induced neurodegeneration". Journal of Alzheimer's Disease. 10 (2–3): 223–53. doi:10.3233/JAD-2006-102-309. PMID 17119290.
  206. ^ Institute of Medicine (2001). "Zinc". Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington, DC: National Academy Press. pp. 442–501. doi:10.17226/10026. ISBN 978-0-309-07279-3. PMID 25057538. Archived from the original on September 19, 2017.
  207. Stipanuk, Martha H. (2006). Biochemical, Physiological & Molecular Aspects of Human Nutrition. W. B. Saunders Company. pp. 1043–1067. ISBN 978-0-7216-4452-3.
  208. ^ Greenwood & Earnshaw 1997, pp. 1224–1225
  209. Kohen, Amnon; Limbach, Hans-Heinrich (2006). Isotope Effects in Chemistry and Biology. Boca Raton, Florida: CRC Press. p. 850. ISBN 978-0-8247-2449-8.
  210. ^ Greenwood & Earnshaw 1997, p. 1225
  211. Cotton et al. 1999, p. 627
  212. Gadallah, MA (2000). "Effects of indole-3-acetic acid and zinc on the growth, osmotic potential and soluble carbon and nitrogen components of soybean plants growing under water deficit". Journal of Arid Environments. 44 (4): 451–467. Bibcode:2000JArEn..44..451G. doi:10.1006/jare.1999.0610.
  213. Ziliotto, Silvia; Ogle, Olivia; Yaylor, Kathryn M. (2018). "Chapter 17. Targeting Zinc(II) Signalling to Prevent Cancer". In Sigel, Astrid; Sigel, Helmut; Freisinger, Eva; Sigel, Roland K. O. (eds.). Metallo-Drugs: Development and Action of Anticancer Agents. Metal Ions in Life Sciences. Vol. 18. Berlin: de Gruyter GmbH. pp. 507–529. doi:10.1515/9783110470734-023. ISBN 9783110470734. PMID 29394036.
  214. Cotton et al. 1999, p. 628
  215. Whitney, Eleanor Noss; Rolfes, Sharon Rady (2005). Understanding Nutrition (10th ed.). Thomson Learning. pp. 447–450. ISBN 978-1-4288-1893-4.
  216. Hershfinkel, M; Silverman WF; Sekler I (2007). "The Zinc Sensing Receptor, a Link Between Zinc and Cell Signaling". Molecular Medicine. 13 (7–8): 331–336. doi:10.2119/2006-00038.Hershfinkel. PMC 1952663. PMID 17728842.
  217. Cotton et al. 1999, p. 629
  218. Blake, Steve (2007). Vitamins and Minerals Demystified. McGraw-Hill Professional. p. 242. ISBN 978-0-07-148901-0.
  219. ^ Fosmire, G. J. (1990). "Zinc toxicity". American Journal of Clinical Nutrition. 51 (2): 225–7. doi:10.1093/ajcn/51.2.225. PMID 2407097.
  220. Krause J (2008). "SPECT and PET of the dopamine transporter in attention-deficit/hyperactivity disorder". Expert Rev. Neurother. 8 (4): 611–625. doi:10.1586/14737175.8.4.611. PMID 18416663. S2CID 24589993.
  221. Sulzer D (2011). "How addictive drugs disrupt presynaptic dopamine neurotransmission". Neuron. 69 (4): 628–649. doi:10.1016/j.neuron.2011.02.010. PMC 3065181. PMID 21338876.
  222. ^ Scholze P, Nørregaard L, Singer EA, Freissmuth M, Gether U, Sitte HH (2002). "The role of zinc ions in reverse transport mediated by monoamine transporters". J. Biol. Chem. 277 (24): 21505–21513. doi:10.1074/jbc.M112265200. PMID 11940571. The human dopamine transporter (hDAT) contains an endogenous high affinity Zn binding site with three coordinating residues on its extracellular face (His193, His375, and Glu396). ... Thus, when Zn is co-released with glutamate, it may greatly augment the efflux of dopamine.
  223. Tsvetkov, PO; Roman, AY; Baksheeva, VE; Nazipova, AA; Shevelyova, MP; Vladimirov, VI; Buyanova, MF; Zinchenko, DV; Zamyatnin AA, Jr; Devred, F; Golovin, AV; Permyakov, SE; Zernii, EY (2018). "Functional Status of Neuronal Calcium Sensor-1 Is Modulated by Zinc Binding". Frontiers in Molecular Neuroscience. 11: 459. doi:10.3389/fnmol.2018.00459. PMC 6302015. PMID 30618610.
  224. ^ "Overview on Dietary Reference Values for the EU population as derived by the EFSA Panel on Dietetic Products, Nutrition and Allergies" (PDF). 2017. Archived (PDF) from the original on August 28, 2017.
  225. Tolerable Upper Intake Levels For Vitamins And Minerals (PDF), European Food Safety Authority, 2006, archived (PDF) from the original on March 16, 2016
  226. "Federal Register May 27, 2016 Food Labeling: Revision of the Nutrition and Supplement Facts Labels. FR page 33982" (PDF). Archived (PDF) from the original on August 8, 2016.
  227. "Daily Value Reference of the Dietary Supplement Label Database (DSLD)". Dietary Supplement Label Database (DSLD). Archived from the original on April 7, 2020. Retrieved May 16, 2020.
  228. Ensminger, Audrey H.; Konlande, James E. (1993). Foods & Nutrition Encyclopedia (2nd ed.). Boca Raton, Florida: CRC Press. pp. 2368–2369. ISBN 978-0-8493-8980-1.
  229. "Zinc content of selected foods per common measure" (PDF). USDA National Nutrient Database for Standard Reference, Release 20. United States Department of Agriculture. Archived from the original (PDF) on March 5, 2009. Retrieved December 6, 2007.
  230. ^ Allen, Lindsay H. (1998). "Zinc and micronutrient supplements for children". American Journal of Clinical Nutrition. 68 (2 Suppl): 495S – 498S. doi:10.1093/ajcn/68.2.495S. PMID 9701167.
  231. Rosado, J. L. (2003). "Zinc and copper: proposed fortification levels and recommended zinc compounds". Journal of Nutrition. 133 (9): 2985S – 9S. doi:10.1093/jn/133.9.2985S. PMID 12949397.
  232. Hotz, C.; DeHaene, J.; Woodhouse, L. R.; Villalpando, S.; Rivera, J. A.; King, J. C. (2005). "Zinc absorption from zinc oxide, zinc sulfate, zinc oxide + EDTA, or sodium-zinc EDTA does not differ when added as fortificants to maize tortillas". Journal of Nutrition. 135 (5): 1102–5. doi:10.1093/jn/135.5.1102. PMID 15867288.
  233. ^ "The impact of zinc supplementation on childhood mortality and severe morbidity". World Health Organization. 2007. Archived from the original on March 2, 2009.
  234. Shrimpton, R; Gross R; Darnton-Hill I; Young M (2005). "Zinc deficiency: what are the most appropriate interventions?". British Medical Journal. 330 (7487): 347–349. doi:10.1136/bmj.330.7487.347. PMC 548733. PMID 15705693.
  235. Moshfegh, Alanna; Goldman, Joseph; Cleveland, Linda (2005). "NHANES 2001–2002: Usual Nutrient Intakes from Food Compared to Dietary Reference Intakes" (PDF). U.S. Department of Agriculture, Agricultural Research Service. Table A13: Zinc. Retrieved January 6, 2015.
  236. What We Eat In America, NHANES 2013–2014 Archived February 24, 2017, at the Wayback Machine.
  237. Ibs, KH; Rink L (2003). "Zinc-altered immune function". Journal of Nutrition. 133 (5 Suppl 1): 1452S – 1456S. doi:10.1093/jn/133.5.1452S. PMID 12730441.
  238. ^ American Dietetic Association (2003). "Position of the American Dietetic Association and Dietitians of Canada: Vegetarian diets" (PDF). Journal of the American Dietetic Association. 103 (6): 748–765. doi:10.1053/jada.2003.50142. PMID 12778049. Archived (PDF) from the original on January 14, 2017.
  239. Freeland-Graves JH; Bodzy PW; Epright MA (1980). "Zinc status of vegetarians". Journal of the American Dietetic Association. 77 (6): 655–661. doi:10.1016/S1094-7159(21)03587-X. PMID 7440860. S2CID 8424197.
  240. Hambidge, M (2003). "Biomarkers of trace mineral intake and status". Journal of Nutrition. 133. 133 (3): 948S – 955S. doi:10.1093/jn/133.3.948S. PMID 12612181.
  241. Geoffrey Michael Gadd (March 2010). "Metals, minerals and microbes: geomicrobiology and bioremediation". Microbiology. 156 (3): 609–643. doi:10.1099/mic.0.037143-0. PMID 20019082. Archived from the original on October 25, 2014.
  242. Alloway, Brian J. (2008). "Zinc in Soils and Crop Nutrition, International Fertilizer Industry Association, and International Zinc Association". Archived from the original on February 19, 2013.
  243. Eisler, Ronald (1993). "Zinc Hazard to Fish, Wildlife, and Invertebrates: A Synoptic Review". Contaminant Hazard Reviews (10). Laurel, Maryland: U.S. Department of the Interior, Fish and Wildlife Service: 5. Bibcode:1993usgs.rept....5E. Archived (PDF) from the original on March 6, 2012.
  244. Muyssen, Brita T. A.; De Schamphelaere, Karel A. C.; Janssen, Colin R. (2006). "Mechanisms of chronic waterborne Zn toxicity in Daphnia magna". Aquatic Toxicology. 77 (4): 393–401. Bibcode:2006AqTox..77..393M. doi:10.1016/j.aquatox.2006.01.006. PMID 16472524.
  245. Bothwell, Dawn N.; Mair, Eric A.; Cable, Benjamin B. (2003). "Chronic Ingestion of a Zinc-Based Penny". Pediatrics. 111 (3): 689–91. doi:10.1542/peds.111.3.689. PMID 12612262.
  246. Johnson AR; Munoz A; Gottlieb JL; Jarrard DF (2007). "High dose zinc increases hospital admissions due to genitourinary complications". J. Urol. 177 (2): 639–43. doi:10.1016/j.juro.2006.09.047. PMID 17222649.
  247. Richard Martin (February 15, 2010). "Lawsuits blame denture adhesives for neurological damage (Denture adhesives cited in lawsuits)". St. Petersburg Times. Archived from the original on October 11, 2012. Retrieved December 31, 2022.
  248. Oxford, J. S.; Öberg, Bo (1985). Conquest of viral diseases: a topical review of drugs and vaccines. Elsevier. p. 142. ISBN 978-0-444-80566-9.
  249. "FDA says Zicam nasal products harm sense of smell". Los Angeles Times. June 17, 2009. Archived from the original on June 21, 2012.
  250. Lamore SD; Cabello CM; Wondrak GT (2010). "The topical antimicrobial zinc pyrithione is a heat shock response inducer that causes DNA damage and PARP-dependent energy crisis in human skin cells". Cell Stress & Chaperones. 15 (3): 309–22. doi:10.1007/s12192-009-0145-6. PMC 2866994. PMID 19809895.
  251. Barceloux, Donald G.; Barceloux, Donald (1999). "Zinc". Clinical Toxicology. 37 (2): 279–292. doi:10.1081/CLT-100102426. PMID 10382562.
  252. Bennett, Daniel R. M. D.; Baird, Curtis J. M.D.; Chan, Kwok-Ming; Crookes, Peter F.; Bremner, Cedric G.; Gottlieb, Michael M.; Naritoku, Wesley Y. M.D. (1997). "Zinc Toxicity Following Massive Coin Ingestion". American Journal of Forensic Medicine and Pathology. 18 (2): 148–153. doi:10.1097/00000433-199706000-00008. PMID 9185931.
  253. Fernbach, S. K.; Tucker G. F. (1986). "Coin ingestion: unusual appearance of the penny in a child". Radiology. 158 (2): 512. doi:10.1148/radiology.158.2.3941880. PMID 3941880.
  254. Stowe, C. M.; Nelson, R.; Werdin, R.; Fangmann, G.; Fredrick, P.; Weaver, G.; Arendt, T. D. (1978). "Zinc phosphide poisoning in dogs". Journal of the American Veterinary Medical Association. 173 (3): 270. PMID 689968.
  255. Reece, R. L.; Dickson, D. B.; Burrowes, P. J. (1986). "Zinc toxicity (new wire disease) in aviary birds". Australian Veterinary Journal. 63 (6): 199. doi:10.1111/j.1751-0813.1986.tb02979.x. PMID 3767804.

Bibliography

External links

Listen to this article (1 hour and 3 minutes)
Spoken Misplaced Pages iconThis audio file was created from a revision of this article dated 25 January 2012 (2012-01-25), and does not reflect subsequent edits.(Audio help · More spoken articles)
Periodic table
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 H He
2 Li Be B C N O F Ne
3 Na Mg Al Si P S Cl Ar
4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6 Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7 Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
s-block f-block d-block p-block
Zinc compounds
Zinc(I)
Organozinc(I) compounds
Zinc(II)
Organozinc(II) compounds
  • Zn(CH3)2
  • Zn(C2H5)2
  • Zn(CH3COO)2
  • Zn(CH(CH3)2)2
  • Zn(C(CH3)3)2
  • Zn(C6H5)2
  • Zn(C3H5O3)2
  • ZnICH2I
  • Ionotropic glutamate receptor modulators
    AMPARTooltip α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor
    KARTooltip Kainate receptor
    NMDARTooltip N-Methyl-D-aspartate receptor

    Categories:
    Zinc Add topic