Misplaced Pages

2022 in archosaur paleontology: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 20:41, 30 June 2022 editSlvrHwk (talk | contribs)Extended confirmed users6,592 edits Sauropodomorph researchTag: Visual edit: Switched← Previous edit Revision as of 02:29, 1 July 2022 edit undo69.40.207.113 (talk) New pterosaur taxaTags: Reverted Mobile edit Mobile web editNext edit →
Line 855: Line 855:
A large (2.5 metre wingspan) ] pterosaur. Genus includes new species ''D. sgiathanach''. A large (2.5 metre wingspan) ] pterosaur. Genus includes new species ''D. sgiathanach''.
| |
|-
|''''']''''' <ref>{{Cite web |title=Anurognathid in Amber {{!}} extreme paleontology anurognathids, enantiornithines, birds and other flying archosaurs in amber |url=http://www.aakz.com/anurognathid-in-amber.html |access-date=2022-06-26 |website=www.aakz.com}}</ref>
|Gen. et sp. nov
|In press
|
|](])
|]
|]
|A late surviving ]. The type species is ''E. burmae''.
|]
|- |-
| |

Revision as of 02:29, 1 July 2022

Overview of the events of 2022 in archosaur paleontology
List of years in archosaur paleontology
In reptile paleontology
2019
2020
2021
2022
2023
2024
2025
In paleontology
2019
2020
2021
2022
2023
2024
2025
In science
2019
2020
2021
2022
2023
2024
2025
+...

This article records new taxa of fossil archosaurs of every kind that are scheduled described during the year 2022, as well as other significant discoveries and events related to paleontology of archosaurs that are scheduled to occur in the year 2022.

Pseudosuchians

New pseudosuchian taxa

Name Novelty Status Authors Age Type locality Country Notes Images
Confractosuchus Gen. et sp. nov In press White et al. Late Cretaceous (Cenomanian) Winton Formation  Australia A eusuchian. The type species is C. sauroktonos.

Diplocynodon kochi

Sp. nov Valid Venczel & Codrea Eocene (Priabonian) Cluj Limestone Formation  Romania

Eptalofosuchus

Gen. et sp. nov Valid Marinho et al. Late Cretaceous Uberaba Formation  Brazil A notosuchian crocodylomorph.
The type species is E. viridi.
Announced in 2021; the final article version was published in 2022.

Hanyusuchus

Gen. et sp. nov Iijima et al. Holocene  China A member of the family Gavialidae with a mosaic of gavialine and tomistomine features across the skeleton.
The type species is H. sinensis.
Kinyang Gen. et spp. nov Brochu et al. Early - Middle Miocene Maboko Formation

Lokone Formation

 Kenya A broad skulled genus of osteolaemine crocodile. Type species is K. mabokoensis, also includes new species K. tchernovi.

Mambawakale

Gen. et sp. nov Valid Butler et al. Middle Triassic Manda Beds  Tanzania An early diverging pseudosuchian of uncertain affinities.
The type species is M. ruhuhu.
Mambawakale
Mambawakale

Maomingosuchus acutirostris

Sp. nov Valid Massonne et al. Eocene (late Bartonian–Priabonian) Na Duong Formation  Vietnam

Sacacosuchus

Gen. et sp. nov Salas-Gismondi et al. Late Miocene Pisco Formation  Peru A member of the family Gavialidae.
The type species is S. cordovai.
Yanjisuchus Gen. et sp. nov Valid Rummy et al. Cretaceous (AlbianCenomanian) Longjing Formation  China A paralligatorid crocodyliform.
The type species is Y. longshanensis.
Announced in 2021; the final article version was published in 2022.

General pseudosuchian research

  • A study on the mandible embryogenesis in extant caimans, and on its implications for the knowledge of the evolution of postdentary lower jaw of pseudosuchians, is published by Bona et al. (2022).
  • A study on the musculature of jaws of crocodylians and fossil suchians, and on its implications for the knowledge of the impact of skull flattening on muscle anatomy of suchians, is published by Sellers et al. (2022).
  • Revision of Tsylmosuchus donensis and Scythosuchus basileus is published by Sennikov (2022), who interprets the latter taxon as a junior synonym of the former one, and interprets T. donensis as a likely member of the family Ctenosauriscidae.
  • Partial maxilla of a basal loricatan is described from the Upper Triassic (Carnian) lower Candelária Sequence of the Hyperodapedon Assemblage Zone (Brazil) by Damke et al. (2022), expanding known record of loricatans in this unit.
  • A study aiming to model to the likely gait of Batrachotomus kupferzellensis is published by Polet & Hutchinson (2022).
  • A study on the feeding ecology of Batrachotomus kupferzellensis is published by Mujal et al. (2022).

Aetosaur research

  • A study on the microstructure of the humerus, femur and tibia of Aetosauroides scagliai, and on its implications for the knowledge of the paleobiology of this aetosaur, is published by Ponce, Desojo & Cerda (2022).

Crocodylomorph research

  • A study on the evolution of palatal anatomy in early crocodylomorphs is published by Dollman & Choiniere (2022).
  • Description of the anatomy of the holotype specimen of Junggarsuchus sloani, its comparison to Dibothrosuchus elaphros, and a study on the affinities of both taxa is published by Ruebenstahl et al. (2022).
  • Review of the type material of the crocodylomorph ichnotaxon Crocodylopodus meijidei from the Berriasian of Spain, and a study on the locomotion of the trackmaker, is published by Castanera et al. (2022).
  • Description of the microstructure of the tooth and tooth attachment tissues of Notosuchus terrestris is published by Navarro et al. (2022), who find the relative and absolute enamel thickness of N. terrestris to be similar to those reported for carnivorous notosuchians such as baurusuchids, and interpret their findings as indicating that the tooth growth rates of N. terrestris were reduced in comparison with other notosuchians.
  • A study on the bone histology of Mariliasuchus amarali, based on a new specimen is published by Sena et al. (2022).
  • A study on the palatal anatomy of Sebecus icaeorhinus and its implications for the knowledge of the variability in the palatal anatomy within Sebecidae, is published by Bravo et al. (2022).
  • A study on the phylogenetic relationships of neosuchians and on timing of the origination of key clades in neosuchian evolution is published by Groh et al. (2022).
  • A study on the evolution of salt glands in thalattosuchians is published by Cowgill et al. (2022).
  • A study on the phylogenetic affinities of Portugalosuchus azenhae is published by Darlim et al. (2022).
  • Lindblad et al. (2022) describe specimens of Borealosuchus griffithi and B. sternbergii preserved in proximity to each other within the same deposits of the Paleocene Ravenscrag Formation (Saskatchewan, Canada), expanding known stratigraphic and geographic range of these species, and interpret this finding as possible evidence of niche partitioning or other ecological relationships between the two species.
  • Reconstructions of the inner cavities of the holotype skulls of Arenysuchus gascabadiolorum and Agaresuchus subjuniperus are presented by Puértolas-Pascual et al. (2022).
  • Kuzmin (2022) reviews all known material of long-snouted crocodyliforms from the Upper Cretaceous (Cenomanian–Santonian) of Central Asia, confirms Zholsuchus procerus to be a valid taxon, and argues that it is likely one of the oldest known members of the crown group of Crocodylia.
  • Redescription of the holotype of Notocaiman stromeri, and a study on its taxonomic status and phylogenetic affinities, is published by Bona et al. (2022).
  • The oldest known fossil material of a member of the genus Crocodylus in Madagascar, dated to between 7670 and 7510 years cal BP, is described by Martin et al. (2022).

Non-avian dinosaurs

New dinosaur taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Abditosaurus

Gen. et sp. nov

Valid

Vila et al.

Late Cretaceous (Maastrichtian)

Conques Formation

 Spain

A saltasaurine titanosaur.
The type species is A. kuehnei.

Bashanosaurus

Gen. et sp. nov

Valid

Dai et al.

Middle Jurassic (Bajocian)

Shaximiao Formation

 China

A basal stegosaur. The type species is B. primitivus.

Dzharaonyx

Gen. et sp. nov

Valid

Averianov & Sues

Late Cretaceous (Turonian)

Bissekty Formation

 Uzbekistan

An alvarezsaurid theropod. The type species is D. eski.

Guemesia

Gen. et sp. nov

In press

Agnolín et al.

Late Cretaceous (Campanian)

Los Blanquitos Formation

 Argentina

An abelisaurid theropod. The type species is G. ochoai.

Huallasaurus

Gen. et sp. nov

Valid

Rozadilla et al.

Late Cretaceous (Maastrichtian)

Los Alamitos Formation

 Argentina

A saurolophine hadrosaurid belonging to the tribe Kritosaurini. The type species is 'Kritosaurus' australis (Bonaparte, 1984).

Iberospinus

Gen. et sp. nov

Valid

Mateus & Estraviz-López

Early Cretaceous (Barremian)

Papo Seco Formation

 Portugal

A spinosaurid theropod.
The type species is I. natarioi.

Kelumapusaura

Gen. et sp. nov

Valid

Rozadilla et al.

Late Cretaceous (Campanian-Maastrichtian)

Allen Formation

 Argentina

A saurolophine hadrosaurid belonging to the tribe Kritosaurini. The type species is K. machi.

Maip

Gen. et sp. nov

Valid

Aranciaga Rolando et al.

Late Cretaceous (Maastrichtian)

Chorrillo Formation

 Argentina

A megaraptorid theropod. The type species is M. macrothorax.

Menucocelsior

Gen. et sp. nov

Valid

Rolando et al.

Late Cretaceous (Campanian-Maastrichtian)

Allen Formation

 Argentina

A titanosaur sauropod.
The type species is M. arriagadai.
Announced in 2021; the final article version was published in 2022.

Napaisaurus

Gen. et sp. nov

Valid

Ji & Zhang

Early Cretaceous

Xinlong Formation

 China

A basal member of Iguanodontia. The type species is N. guangxiensis. Announced in 2021; the final article version was published in 2022.

Ondogurvel Gen. et sp. nov In press Averianov & Lopatin Late Cretaceous (Campanian) Barun Goyot Formation  Mongolia An alvarezsaurid theropod. The type species is O. alifanovi.

Papiliovenator

Gen. et sp. nov

Valid

Pei et al.

Late Cretaceous (Campanian)

Bayan Mandahu Formation

 China

A troodontid theropod.
The type species is P. neimengguensis.
Announced in 2021; the final article version to be published in 2022.

Paralitherizinosaurus

Gen. et sp. nov

Valid

Kobayashi et al.

Late Cretaceous (Campanian)

Osoushinai Formation

 Japan

A therizinosaurid theropod. The type species is P. japonicus.

Sierraceratops

Gen. et sp. nov

Valid

Dalman et al.

Late Cretaceous (latest CampanianMaastrichtian)

Hall Lake Formation

 United States
( New Mexico)

A chasmosaurine ceratopsid.
The type species is S. turneri.
Announced in 2021; the final article version will be published in 2022.

Sierraceratops
Sierraceratops

Tyrannosaurus imperator

Sp. nov

In press

Paul, Persons & Van Raalte

Late Cretaceous (late Maastrichtian)

Hell Creek, Lance, Laramie, Arapahoe, McRae?, North Horn?, and Javelina? Formations

 United States
( Montana,
 North Dakota,
 South Dakota,
 Wyoming,
 New Mexico?,
 Texas?,
 Utah?)

A tyrannosaurine; a proposed species of Tyrannosaurus.
FMNH PR 2081 ("Sue"), the holotype of T. imperator

Tyrannosaurus regina

Sp. nov

In press

Paul, Persons & Van Raalte

Late Cretaceous (late Maastrichtian)

Hell Creek, Lance, Ferris, Denver, Frenchman, Willow Creek, and Scollard Formations

 Canada
( Alberta,
 Saskatchewan)
 United States
( Colorado,
 Montana,
 North Dakota,
 South Dakota,
 Wyoming)

A tyrannosaurine; a proposed species of Tyrannosaurus.
MOR 555 ("Wankel rex"), the holotype of T. regina

Yuxisaurus

Gen. et sp. nov

Valid

Yao et al.

Early Jurassic (SinemurianToarcian)

Fengjiahe Formation

 China

An early thyreophoran. The type species is Y. kopchicki.

General non-avian dinosaur research

  • A study on the ecomorphospace occupation of major megaherbivorous dinosaur clades from the Late Jurassic through to the end of the Late Cretaceous in North America is published by Wyenberg-Henzler (2022).
  • A study on the age of a new sauropod-dominated dinosaur fauna from the Lower Shaximiao Formation in Yunyang (Chongqing, China) is published by Zhou et al. (2022).
  • Description of theropod and ornithischian tracks from the Jurassic Imilchil and Isli formations (Morocco), including theropod tracks representing the ichnogenus Changpeipus (otherwise known from abundant occurrences in East Asia, and possibly indicative of faunal exchange between East Asia and northern Africa in the Middle Jurassic), is published by Klein et al. (2022).
  • Revision of the Early Cretaceous dinosaur assemblage from the Mogoito locality (Murtoi Formation, Transbaikalia, Russia) is published by Averianov et al. (2022), who report the presence of Tengrisaurus starkovi, as well as ornithomimosaur, therizinosaur, dromaeosaurid, jeholosaurid (including teeth previously attributed to Psittacosaurus) and indeterminate sauropod and theropod fossil material.
  • New fossil site for the Jehol Biota, preserving faunal assemblage dominated by dinosaur fossils and similar in composition to the Lujiatun Unit of the Yixian Formation at Beipiao (Liaoning, China), is reported from Ningcheng (Inner Mongolia, China) by Zhang et al. (2022).
  • Two trackways produced by at least two different dinosaur taxa (smaller, bipedal trackmaker, likely a theropod, and a larger trackmaker of uncertain affinities, possibly a theropod or ornithopod), representing the first records of non-avian dinosaurs from Palestine reported to date, are described from a new site located within the city of Al-Bireh and belonging to the Albian Soreq Formation by Lallensack et al. (2022).
  • A large dinosaur tracksite preserving theropod tracks and abundant hadrosaurid tracks is described from the Upper Cretaceous (Campanian) Wapiti Formation (Alberta, Canada) by Enriquez et al. (2022), who evaluate the implications of this finding for the knowledge of the paleoecology of dinosaurs known from the Wapiti Formation.
  • A study on the calcium isotope variability in tooth enamel of dinosaurs from the Upper Cretaceous Dinosaur Park Formation, Horseshoe Canyon Formation and Scollard Formation (Alberta, Canada), and on its implications for the knowledge of the stability of food web structure of non-avian dinosaur communities in the millions of years preceding the end of the Cretaceous, is published by Martin et al. (2022).
  • A study on the stable isotope compositions of dinosaur eggshells and their associated depositional settings of the Upper Cretaceous Huizhou Formation (China), and on their implications for the knowledge of the environment of dinosaur nesting sites, is published by He et al. (2022).
  • Review of chemistry of the organic molecules detected in non-avian dinosaur fossils to date is published by Tahoun et al. (2022).

Ornithischian research

  • A study on the phylogenetic relationships of the neornithischian dinosaurs commonly referred to as "hypsilophodontids", aiming to determine causes of conflicting placements of these taxa in different phylogenetic analyses, is published by Brown et al. (2022).
  • A study aiming to determine whether ornithischian megaherbivores from the upper Oldman Formation (Alberta, Canada) partitioned their niches based on spatial patterns of occupation and resource-use, based on strontium, oxygen and carbon isotope data, is published by Cullen et al. (2022).

Cerapod research

  • Description of postcranial material tentatively assigned to Camptosaurus sp. from the Late Jurassic Villar del Arzobispo Formation (Valencia, Spain) is published by Sánchez-Fenollosa et al. (2022)
  • Redescription of the holotype of Draconyx loureiroi, including description of previously unreported material, and a study on the phylogenetic affinities of this taxon is published by Rotatori, Moreno-Azanza & Mateus (2022).
  • A new specimen of Iguanodon bernissartensis (a partial axial skeleton) is described from the Early Cretaceous (Upper Barremian) Arcillas de Morella Formation (Spain) by Gasulla et al. (2022)
  • Description of new fossils of large bodied styracosternans pertaining to two different taxa from the Early Cretaceous El Castellar Formation (Teruel, Spain) is published by García-Cobeña, Verdú,and Cobos (2022), who also describe the first dinosaur tracksite from this formation.
  • Fossil material of non-hadrosauriform styracosternans is described from the Lower Cretaceous Khok Kruat Formation by Samathi & Suteethorn (2022), representing the first record of a juvenile iguanodontian co-occurring with an adult (possibly of the same taxon) from Thailand.
  • Description of a nearly complete and articulated skeleton of a juvenile hadrosauroid from the Upper Cretaceous Bayan Shireh Formation (Mongolia), distinct from Gobihadros mongoliensis and likely representing a second, previously unknown hadrosauroid taxon from this formation, is published by Averianov, Lopatin & Tsogtbaatar (2022).
  • A clutch of subspherical dinosaur eggs, at least two of which contain identifiable hadrosauroid embryos with possible affinities with such taxa as Levnesovia transoxiana, Nanningosaurus dashiensis or Tanius sinensis, is described from the Upper Cretaceous Hekou Formation (China) by Xing et al. (2022).
  • Redescription of two putative rhabdodontid braincases from the Maastrichtian of the Haţeg Basin (Romania) is published by Augustin et al. (2022), who reinterpret these specimens as hadrosauroid braincases, likely belonging to members of the species Telmatosaurus transsylvanicus.
  • Review of the taxonomic status, phylogenetic relationships and biogeography of hadrosauroids known from Mexico is published by Ramírez-Velasco (2022).
  • A study on the morphometric changes within the skull and dietary changes during growth of North American hadrosaurids is published by Wyenberg-Henzler, Patterson & Mallon (2022).
  • A pathological ulna of a specimen of Amurosaurus riabinini, preserved with a hypertrophied and swollen distal region and with the distal articular surface engulfed within a large overgrowth of newly formed bone, is described from the Maastrichtian Udurchukan Formation (Amur Region, Russia) by Bertozzo et al. (2022), who interpret the bone as still healing prior to the animal's death, with the misalignment of the fracture and the resulting malunion of the two fragments of the bone probably causing the animal to limp and walk on three limbs.
  • A study on the taphonomy of a bonebed with fossils of members of the genus Gryposaurus from the lower unit of the Campanian Oldman Formation (Alberta, Canada), and on the bone microstructure of specimens from this bonebed, is published by Scott et al. (2022).
  • Description of the skin of a hadrosaurid specimen (probably belonging to the species Edmontosaurus annectens) from the Maastrichtian Frenchman Formation (Saskatchewan, Canada), preserving unique corrugated scales that have not been observed in this species before, is published by Libke et al. (2022).
  • A method which can be used to determine the percent vascularity in any given CT slice of the frontoparietal is presented by Nirody et al. (2022), who use this method to study changes of vascularity in the frontoparietal dome of Stegoceras validum during its ontogeny.
  • A study on tooth replacement patterns in Yinlong downsi, Hualianceratops wucaiwanensis and Chaoyangsaurus youngi is published by Hu et al. (2022).
  • The oldest umbilical scar reported to date, which is also the first umbilical scar reported to date in a non-avian dinosaur, is described in a specimen of Psittacosaurus from the Lower Cretaceous Jehol Group (China) by Bell et al. (2022).
  • A new articulated skeleton of Yamaceratops dorngobiensis, representing the first substantially complete skeleton and the first known juvenile specimen of this taxon, is described from the Upper Cretaceous (?Santonian-Campanian) Javkhlant Formation (Mongolia) by Son et al. (2022).
  • A study on the bone histology of Koreaceratops hwaseongensis is published by Baag & Lee (2022).
  • Mallon et al.(2022) redescribe two ceratopsid frills from Canada attributed to Torosaurus (representing the northernmost records of this genus reported to date), and evaluate possible implications of these specimens for determination of the status of Torosaurus as a genus distinct from Triceratops.
  • A study on the fenestra perforating the right squamosal of the Triceratops horridus specimen known as Big John is published by D'Anastasio et al. (2022), who interpret this fenestra as the result of a traumatic event, possibly a fight with another Triceratops.
  • A study on the hadrosaurid and ceratopsid faunas of the Upper Cretaceous Prince Creek Formation, Cantwell Formation and Chignik Formation (Alaska, United States), and on the possible impact of the climate on differences of relative abundances of hadrosaurids and ceratopsids from these formations, is published by Fiorillo et al. (2022).

Thyreophoran research

  • Schade et al. (2022) create digital models of the braincase of Struthiosaurus austriacus, and evaluate the implication of its anatomy for the knowledge of the behavioral capacities of this dinosaur.
  • Partial skull of a member or a relative of the genus Kunbarrasaurus is described from the Albian Toolebuc Formation by Frauenfelder et al. (2022), representing the oldest ankylosaurian material from Queensland (Australia) reported to date.
  • A description of a partial thyreophoran osteoderm from an Early Jurassic Konservatlagerstätte near Grimmen, Germany is published by Schade & Ansorge (2022).

Saurischian research

Sauropodomorph research

  • A study on the shape variation of long bones in limbs of sauropodomorphs, and on its implications for the knowledge of the evolution of the sauropod bauplan, is published by Lefebvre et al. (2022).
  • Review of the biological mechanisms underpinning the evolutionary transition from obligatory or facultative bipedalism to an obligatory quadrupedalism in sauropodomorphs is published by Otero & Hutchinson (2022).
  • Revision and a study on the phylogenetic affinities of Carnian sauropodomorphs from South America is published by Langer et al. (2022).
  • A study on the shape and variation of the anterolateral scar in the femora of Pampadromaeus barberenai and Buriolestes schultzi, and on its implications for the knowledge of the distribution of the anterolateral scar in ornithodirans, is published by Müller (2022).
  • Reconstruction of the appendicular musculature of Thecodontosaurus antiquus is presented by Ballell, Rayfield & Benton (2022).
  • A new, large sized early sauropodomorph specimen is described from the Late Triassic (Carnian) Santa Maria Formation (Brazil) by Müller and Garcia (2022)
  • Revision of the non-gravisaurian sauropodiform taxa from South America (Mussaurus patagonicus, Leonerasaurus taquetrensis, Lessemsaurus sauropoides and Ingentia prima is published by Apaldetti & Martínez (2022).
  • A study on changes occurring in the postcranial skeleton of Mussaurus patagonicus during its ontogeny is published by Otero & Pol (2022).
  • Evidence of widespread incompleteness of necks even in best-preserved and best-known sauropod specimens, and of widespread distortion of known sauropod cervical vertebrae, is presented by Taylor (2022).
  • A study aiming to determine whether the sauropod tracks from the Kimmeridgian Courtedoux-Tchâfouè track site (Reuchenette Formation, Switzerland) all represent the same ichnogenus and whether there is variation in their morphology, using linear-based and geometric morphometrics methods, is published by Sciscio et al. (2022).
  • Fragmentary heart-shaped tooth crown of a sauropod is described from the Bathonian Jaisalmer Formation (India) by Sharma, Singh & Satheesh (2022), who interpret this specimen as the first known record of a member of Turiasauria from India.
  • Description of a nearly complete skull of a member of the genus Apatosaurus from the Upper Jurassic Morrison Formation (Como Bluff, Wyoming, United States), and a study on the tooth replacement in this specimen, is published by Peterson et al. (2022), who interpret their findings as indicative of a different tooth replacement pattern in Apatosaurus relative to Diplodocus, possibly pointing to the ecological niche partitioning among diplodocids and to Apatosaurus’ preference for a food source with tougher vegetation.
  • A study on bony pathologic structures stemming from the pneumatic features in the cervical vertebrae of a diplodocine specimen from the Lower O’Hair Quarry (Morrison Formation; Montana, United States) is published by Woodruff et al. (2022), who diagnose this specimen as likely affected by an avian-like airsacculitis, constituting the first identification of this disease in a non-avian dinosaur specimen.
  • A study on the external morphology, internal microanatomy and bone microstructure of the hemispinous processes of the vertebrae from the holotype specimen of Amargasaurus cazaui and an indeterminate dicraeosaurid specimen from the La Amarga Formation (Argentina), aiming to reconstruct soft tissues associated with those processes and to determine their functional significance, is published by Cerda, Novas, Carballido and Salgado (2022).
  • Four sauropod ribs preserving evidence of three different pathologies (including osteosclerosis) are described from the Middle Jurassic of Yunyang (China) by Tan et al. (2022).
  • Revision of the fossil record of non-titanosaur macronarians from South America is published by Carballido, Bellardini & Salgado (2022).
  • A study on the morphology, preservation and taphonomy of the skin of Haestasaurus becklesii, and a review of sauropod skin morphology, is published by Pittman et al. (2022).
  • A study on the anatomy and phylogenetic affinities of Ligabuesaurus leanzai, based on data from new postcranial elements assigned to the holotype specimen and from a newly referred specimen, is published by Bellardini et al. (2022).
  • Description of teeth of a sauropod belonging to the group Somphospondyli from the Turonian Tamagawa Formation (Japan), and a study on the diet and mastication of this sauropod as inferred from tooth wear, is published by Sakaki et al. (2022).
  • A study on the phylogenetic relationships of titanosaur sauropods is published by Carballido et al. (2022).
  • A study on the morphological variability of hindlimb bones of titanosaur sauropods from the Lo Hueco Konzentrat-Lagerstätte (Villalba de la Sierra Formation, Spain) is published by Páramo et al. (2022).
  • Titanosaur tracks preserving claw impressions are reported from the Anacleto Formation (Argentina) by Tomaselli et al. (2022), who devise a new classification for titanosaur tracks and name the new ichnotaxon Teratopodus malarguensis.
  • The first titanosaur nesting site from the Late Cretaceous of Brazil is reported from the Maastrichtian Serra da Galga Formation by Fiorelli et al. (2022).
  • Pathological multi-shelled egg is described from a titanosaur nest from the Upper Cretaceous Lameta Formation (India) by Dhiman, Verma & Prasad (2022), who interpret this finding as possible evidence that titanosaurs had an oviductal functional morphology similar to birds.
  • Review of the fossil record of titanosaur sauropods from the Campanian and Maastrichtian of South America is published by Santucci & Filippi (2022).
  • A juvenile specimen of Diamantinasaurus matildae, providing information on the growth pattern of this sauropod, is described from the Upper Cretaceous Winton Formation (Australia) by Rigby et al. (2022).
  • A mechanical analysis of Savannasaurus elliottorum is performed by Preuschoft (2022).
  • A review of sauropod fossil material from the Kallamedu Formation, including bones of the giant enigmatic titanosaur Bruhathkayosaurus, is published by Pal & Ayyasami (2022).
  • A reconstruction of the articular cartilage of the left elbow joint of Dreadnoughtus schrani is presented by Voegele et al. (2022).
  • A study on the microstructure of axial bones of Austroposeidon magnificus, Gondwanatitan faustoi and Maxakalisaurus topai, and on its implications for the knowledge of growth phases of these sauropods, is published by Brum et al. (2022).
  • Curved, pencil-like sauropod teeth from the Upper Cretaceous Bostobe Formation (Kazakhstan) are referred to a representative of the clade Opisthocoelicaudiidae by Averianov & Lopatin (2022).
  • A study proposing a method to determine the gait and limb phase of sauropods based on fossil tracksites is published by Lallensack & Falkingham (2022), who interpret their findings as suggestive of diagonal couplet walks, which would have allowed both sides of the body to be supported by the limbs at all times.
  • Revision of the fossil record of sauropodomorph eggs, nests and embryos from South America is published by Fernández, Vila & Moreno-Azanza (2022).
  • Keller & Or (2022) hypothesize that sauropods must have compacted the subsoil during their locomotion, presenting a paradox for productivity of the land that supported them.

Theropod research

  • Review of the morphology and distribution of non-feather integumentary structures in non-avialan theropods is published by Hendrickx et al. (2022).
  • Description of a small high-density assemblage of theropod tracks from the Cretaceous Haman Formation (South Korea), and a study on the distribution of grallatorid tracks in east Asia, is published by Lockley et al. (2022).
  • Trackway produced by a large theropod, probably affected by a foot pathology, is described from the upper Barremian locality of Las Hoyas (La Huérguina Formation, Spain) by Herrera-Castillo et al. (2022).
  • Revision of the fossil material of theropods from the Middle to Late Jurassic of the Vaches Noires cliffs (Normandy, France) is published by Monvoisin et al. (2022).
  • Revision of theropod teeth from the Campanian site of Laño (Spain), evaluating their implications for the knowledge of diversity and evolutionary history of theropods from the Late Cretaceous of Europe, is published by Isasmendi et al. (2022).
  • A study aiming to determine the causes of the shortening of the forelimbs of giant theropods, especially tyrannosaurids, is published by Padian (2022).
  • Caudal vertebra of a theropod is described from the Aliança Formation (Brazil) by De Oliveira, Oliveira & Fambrini (2022), who consider the studied specimen to be a basal neotheropod, and interpret this finding as likely evidence of the survival of basal neotheropods into the Middle-Late Jurassic in Gondwana.
  • The first definitive fossil (a vertebra) of an abelisaurid from the Upper Cretaceous Bahariya Formation (Egypt) is described by Salem et al. (2022).
  • A small abelisaurid caudal vertebra is described from the Upper Cretaceous Presidente Prudente Formation (Brazil) by Delcourt & Langer (2022), who interpret this vertebra as belonging to an adult animal, representing one of the smallest known abelisaurids.
  • A study on the bone histology of the type specimen of Aucasaurus garridoi is published by Baiano & Cerda (2022).
  • An analysis of the possible aquatic habits of members of Spinosauridae, as well as other non-avian dinosaurs, is published by Fabbri et al., who determine that a high bone density would have allowed for underwater foraging in Spinosaurus and Baryonyx, while Suchomimus was likely better suited for terrestrial wading, despite morphological similarities to Baryonyx.
  • Isasmendi et al. (2022) reinterpret a fragment of a maxilla from the Lower Cretaceous of La Rioja (Spain), previously assigned to Baryonyx, as likely belonging to an indeterminate baryonychine closer to Baryonyx than to Suchomimus.
  • Postcranial material of a giant spinosaurid, which was likely one of the largest European theropods reported to date, is described from the Lower Cretaceous Vectis Formation (United Kingdom) by Barker et al. (2022).
  • Redescription of the first theropod tooth discovered in Australia (probably from the Griman Creek Formation) is published by Kotevski and Poropat (2022), who interpret the tooth as belonging to a member of Megaraptoridae.
  • Description of five theropod teeth assignable to three different families (Troodontidae, Dromaeosauridae, and Tyrannosauridae) from the Early Campanian Nenjiang Formation (China) is published by Yu et al. (2022)
  • Partial tyrannosauroid femur, morphologically similar to the femur of Moros intrepidus but not referable to this taxon, is described from the Albian–Cenomanian Wayan Formation (Idaho, United States) by Krumenacker, Zanno & Sues (2022), who interpret this finding as evidence of the presence of a previously unrecognized tyrannosauroid in the early Late Cretaceous of Laramidia.
  • Two juvenile specimens of Gorgosaurus libratus, providing new information on the anatomy and ontogeny of this taxon and tyrannosaurids in general, are described from the Late Cretaceous Dinosaur Park Formation (Alberta, Canada) by Voris et al. (2022).
  • Description of the frontal anatomy of Teratophoneus curriei is published by Yun (2022).
  • A study on the anatomy of the skull of Qianzhousaurus sinensis is published by Foster et al. (2022).
  • Kim et al. (2022) compare a fish centrum found with the holotype of Raptorex kriegsteini with Harenaichthys lui from the Nemegt Formation (Mongolia) and Chinese Xixiaichthys tongxinensis, and interpret their findings as supporting the conclusion that the holotype of R. kriegsteini comes from the Nemegt Formation.
  • Description of the neurovascular canals in rostral cranial elements of Tyrannosaurus rex, and a study on the evolution of these canals among Sauropsida and on the possibility of the presence of lips and specialised sensory organs among non-avian theropods, is published by Bouabdellah, Lessner & Benoit (2022).
  • An ornithomimosaurian pelvis and sacrum is described from the Upper Cretaceous Erlian Formation (China) by Xi et al. (2022), who interpret this fossil material as likely belonging to a member of Ornithomimosauria distinct from Archaeornithomimus asiaticus, probably representing an early-diverging group within Ornithomimosauria.
  • The first diagnostic ornithomimid fossils from the upper Maastrichtian Scollard Formation (Alberta, Canada) are described by Nottrodt (2022), extending the stratigraphic ranges of both Ornithomimus and Struthiomimus in Alberta from the upper Campanian Dinosaur Park Formation through to the Scollard Formation, which constitutes more than 10 million years of time.
  • Redescription of Parvicursor remotus is published by Averianov & Lopatin (2022), who reinterpret the holotype of this genus as a juvenile and consider Linhenykus monodactylus and Ceratonykus oculatus to be synonymous with it.
  • A study on the jaw adductor musculature and bite force of members of Oviraptorosauria is published by Meade & Ma (2022).
  • Review of the knowledge of the reproductive biology of the Late Cretaceous oviraptorosaurs is published by Yang & Sander (2022).
  • A subadult oviraptorid specimen interpreted as the first non-hatchling specimen of Yulong mini reported to date is described from the Upper Cretaceous Qiupa Formation (China) by Wei et al. (2022).
  • A study on the evolution of the skull morphology of non-avialan paravian theropods is published by Pei & Xu (2022).
  • A dromaeosaurid-like sickle claw, similar in some ways to Pyroraptor olympius, is reported from the Grès à Reptiles Formation (France) by Brilhante et al. (2022).
  • A study on the phylogenetic relationships of members of Eudromaeosauria is published by Powers et al. (2022), who interpret Acheroraptor temertyorum and Atrociraptor marshalli as members of the Saurornitholestinae.
  • New theropod assemblage, including the first records of a large carcharodontosaur allosauroid and of a troodontid maniraptoran in Appalachia reported to date, as well as the earliest occurrence of a tyrannosauroid in Appalachia reported to date, is described from the Cenomanian Lewisville Formation (Woodbine Group; Texas, United States) by Noto et al. (2022).

Birds

New bird taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Aegotheles zealandivetus

Sp. nov

Valid

Worthy et al.

Early Miocene

Bannockburn Formation

 New Zealand

An owlet-nightjar; a species of Aegotheles.

Allgoviachen

Gen. et sp. nov

In press

Mayr, Lechner & Böhme

Miocene (Tortonian)

 Germany

A member of the family Anatidae. The type species is A. tortonica.

Annakacygna

Gen. et 2 sp. nov

Valid

Matsuoka & Hasegawa

Miocene

Haraichi Formation

 Japan

A member of the family Anatidae belonging to the tribe Cygnini. The type species is A. hajimei; genus also includes A. yoshiiensis.

Beiguornis Gen. et sp. nov Valid Wang et al. Early Cretaceous Longjiang Formation  China A member of Enantiornithes. The type species is B. khinganensis.

Dryornis hatcheri

Sp. nov

Valid

Degrange

Miocene

Santa Cruz Formation

 Argentina

A member of Cathartidae; a species of Dryornis.

Gypaetus georgii

Sp. nov

In press

Sánchez-Marco

Late Miocene

 Spain

A vulture; a species of Gypaetus (bearded vulture).

Miosurnia

Gen. et sp. nov

Li, Stidham & Zhou in Li et al.

Late Miocene

Liushu Formation

 China

A true owl belonging to the clade Surniini. The type species is M. diurna.

Miotadorna catrionae

Sp. nov

Valid

Tennyson et al.

Miocene (Altonian)

Bannockburn Formation

 New Zealand

A member of the family Anatidae belonging to the subfamily Tadorninae.

Musivavis

Gen. et sp. nov

Valid

Wang et al.

Early Cretaceous (Aptian)

Jiufotang Formation

 China

A member of Enantiornithes. The type species is M. amabilis.

Neophron lolis

Sp. nov

In press

Sánchez-Marco

Late Miocene

 Spain

A vulture; a species of Neophron (Egyptian vulture).

Pliogallus csarnotanus

Sp. nov

Valid

Kessler & Horváth

Pliocene

 Hungary

A member of the family Phasianidae.

Zealandornis

Gen. et sp. nov

Valid

Worthy et al.

Early Miocene

Bannockburn Formation

 New Zealand

A bird with morphology most similar to that of mousebirds, assigned to the new family Zealandornithidae of uncertain affinities but likely belonging to Telluraves. The type species is Z. relictus.

Avian research

  • A study aiming to determine whether the flapping flight of birds evolved through the stage of wing-assisted incline running is published by Kuznetsov & Panyutina (2022).
  • A study on the skeletal morphometrics of a sample of specimens of Confuciusornis sanctus is published by Marugán-Lobón & Chiappe (2022), who interpret their findings as indicating that the polyphasic life cycle of C. sanctus was different from the life cycle of modern birds, and possibly indicative of change of food resources foraged by this bird during its ontogeny.
  • Wang et al. (2022) reconstruct the pectoral girdles of Sapeornis and Piscivorenantiornis.
  • A study on the diet of members of the family Longipterygidae is published by Miller et al. (2022).
  • Review of the general anatomy, taxonomy, phylogeny, evolutionary trends and paleoecology of hesperornithiforms is published by Bell & Chiappe (2022).
  • Review of the palaeognath fossil record is published by Widrig & Field (2022).
  • A study on the stratigraphic provenance of Psammornis eggshells (probably produced by giant ostriches), and on their implications for the knowledge of the evolutionary history of struthionids, is published by Buffetaut (2022).
  • An overview and update of the rhea fossil record from South America and Antarctica is published by Picasso, Acosta Hospitaleche & Mosto (2022).
  • A study on the taxonomic identity of the extinct giant bird that produced eggs known from eggshell fragments from Pleistocene sites in Australia, some of which bear signs of cooking during a narrow temporal window 50 ± 5 ka B.P., is published by Demarchi et al. (2022), who interpret their findings as supporting the attribution of the studied eggshells to Genyornis.
  • A study on the relationships between the shape and size of extant waterfowl tarsometatarsi and their locomotory habits, and on their implications for the knowledge of the locomotory habits of Cayaoa and Paranyroca, is published by De Mendoza & Gómez (2022).
  • A study on the morphological variation of the postcranial skeletons of the Malagasy shelduck, and on its implications for the knowledge of the biology of this species, is published by Nomenjanahary et al. (2022).
  • A catalogue of fossil and subfossil birds from Cuba is published by Suárez (2022).
  • A new partial pedal phalanx of a large, recently extinct barn-owl is described from the Holocene of Guadeloupe by Gala, Laroulandie, and Lenoble (2022).
  • An atlas of a great grey owl is described from the Pleistocene of the Devetashka Cave (Bulgaria) by Boev & Mikkola (2022).
  • Description of a partial humerus belonging to an auk from the Pliocene Fukagawa Group (Japan) is published by Aotsuka & Endo (2022).
  • Fossil material of buttonquails is described from the latest Oligocene and late early to middle Miocene of France by De Pietri et al. (2022), bridging the large temporal gap in the fossil record of this group from the early Oligocene to the late Miocene.
  • A review of the evolutionary and biogeographic history of penguins is published by Pelegrín & Acosta Hospitaleche (2022).
  • Description of a new partial fossil sternum belonging to a member of Procellariidae from the Middle Pleistocene Ichijiku Formation (Japan) is published by Aotsuka, Isaji, and Endo (2022).
  • Revision of the fossil material of birds from Cooper's D locality (South Africa) is published by Pavia et al. (2022).
  • A study on the effect of past climate oscillations in the Western Palearctic and Africa on the distribution of the grey partridge, the common quail, the corn crake, the little owl, the snowy owl and the Alpine chough is published by Carrera, Pavia & Varela (2022).
  • A study on plant material from rock overhangs from mid-late Holocene sites along the Kawarau-Cromwell-Roxburgh Gorges in Central Otago (New Zealand), much of which was likely transported as roosting material or consumed by moa birds, and on its implications for the knowledge of moa diet and ecology (including the first known evidence of the consumption of kōwhai by moa birds), is published by Pole (2022).
  • Evidence from ancient mitochondrial genomes indicative of increase in the population size and genetic diversity of eastern moa after the Last Glacial Maximum, as well as indicative of higher genetic diversity in eastern moa from the southern extent of their range, is presented by Verry, Mitchell & Rawlence (2022), who interpret their findings as indicating that eastern moa expanded from a single glacial refugium following the Last Glacial Maximum.
  • A study on the bone histology of extant and extinct large terrestrial birds, aiming to determine whether bone microanatomy can be used to infer the locomotion mode of large terrestrial birds, is published by Canoville, Chinsamy & Angst (2022).

Pterosaurs

New pterosaur taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Cascocauda

Gen. et sp. nov

Valid

Yang et al.

MiddleLate Jurassic (CallovianOxfordian)

Tiaojishan Formation

 China

An anurognathid. The type species is C. rong.

Dearc

Gen. et sp. nov

Valid

Jagielska et al.

Middle Jurassic (Bathonian)

Lealt Shale Formation

 United Kingdom ( Scotland)

A large (2.5 metre wingspan) rhamphorhynchine pterosaur. Genus includes new species D. sgiathanach.

Elektopterus Gen. et sp. nov In press Late Cretaceous(Cenomanian) Burmese amber Myanmar A late surviving Anurognathid. The type species is E. burmae.
File:Anurognathid in amber backlit.jpg

Pachagnathus

Gen. et sp. nov

Valid

Martínez et al.

Late Triassic
(Norian)

Quebrada del Barro Formation

 Argentina

A raeticodactylid pterosaur.
The type species is P. benitoi.

Thanatosdrakon

Gen. et sp. nov

In press

Ortiz David, González Riga & Kellner

Late Cretaceous (ConiacianSantonian)

Plottier Formation

 Argentina

An azhdarchid. The type species is T. amaru.

Yelaphomte

Gen. et sp. nov

Valid

Martínez et al.

Late Triassic
(Norian)

Quebrada del Barro Formation

 Argentina

A raeticodactylid pterosaur.
The type species is Y. praderioi.

Pterosaur research

  • Description of the skeletal anatomy of Dimorphodon macronyx is published by Sangster (2022).
  • A study reinterpreting the orbital, antorbital and narial fenestrae in the skulls of the anurognathid pterosaurs, based mainly on data from the skulls of specimens of Batrachognathus volans, and aiming to determine the phylogenetic affinities of anurognathids is published by Dalla Vecchia (2022).
  • Two specimens of Kunpengopterus sinensis preserved with bromalites are described from the Jurassic Tiaojishan Formation (China) by Jiang et al. (2022), who interpret the bromalites as fossilized gastric pellets, and evaluate their implications for the knowledge of the diet and the digestive system of this pterosaur.
  • A new ctenochasmatid assemblage from the Early Cretaceous Quebrada Monardes Formation (Chile) is reported by Alarcón et al. (2022).
  • Redescription of the holotype specimen of Moganopterus zhuiana is published by Gao et al. (2022).
  • A study on the soft tissues and on the feasibility of the water launch in an aurorazhdarchid specimen from the Late Jurassic Solnhofen Lagoon is published by Pittman et al. (2022).
  • New fossil material of Bogolubovia orientalis is described from the Campanian Rybushka Formation (Penza Oblast, Russia) by Averianov & Kurin (2022), who consider Bogolubovia to be a valid taxon that can be distinguished from the pteranodontids Pteranodon and Volgadraco.
  • Redescription and a study on the phylogenetic affinities of Ferrodraco lentoni is published by Pentland et al. (2022).
  • New skeleton of Sinopterus, providing additional information of the postcranial morphology of this pterosaur, is described by Zhou, Niu & Yu (2022).
  • Description of a medium-sized wing skeleton of Sinopterus from the Jiufotang Formation, possibly representing a late juvenile ontogenetic stage, and a study on the histology and life history of this specimen is published by Zhou et al. (2022).
  • Cincotta et al. (2022) describe a specimen of Tupandactylus (belonging or related to the species T. imperator) from the Lower Cretaceous Crato Formation (Brazil) associated with skin, monofilaments and branched integumentary structures preserving melanosomes that show tissue-specific geometries (a feature previously known only from theropod dinosaurs), and interpret this finding as indicating that branched integumentary structures in pterosaurs are feathers, as well as providing evidence of deep evolutionary origins of tissue-specific partitioning of melanosome geometry.
  • New pterosaur footprint assemblage is described from the Cenomanian Jangdong Formation (South Korea) by Jung et al. (2022), who interpret the studied footprints as possibly produced by small dsungaripteroids, and possibly indicative of gregarious behavior by individuals from different age groups.
  • A fragment of the wing metacarpal of a member or a relative of the genus Lonchognathosaurus is described from the Lower Cretaceous Ilek Formation at the Novochernorechensk locality (Krasnoyarsk Territory, Russia) by Averianov et al. (2022), representing the first pterosaur postcranial bone from this formation and the first record of a dsungaripterid from Russia reported to date.
  • Cervical vertebra of a large pterosaur is described from the Campanian coastal marine deposits of Izhberda Quarry near the town of Orsk (Orenburg Oblast, Russia) by Averianov, Zverkov & Nikiforov (2022), who interpret this finding as the first record of a giant azhdarchid on the territory of Russia reported to date.

Other archosaurs

Other archosaur taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Maehary

Gen. et sp. nov

Valid

Kellner et al.

Late Triassic (Norian)

Candelária Sequence of the Santa Maria Supersequence

 Brazil

Probably an early-diverging member of Pterosauromorpha. The type species is M. bonapartei.

Other archosaur research

  • A study on the morphospace occupation of distinct skeletal regions of lagerpetids, aiming to determine which portions of the lagerpetid skeleton are more similar to the anatomy of pterosaurs, is published by Müller (2022).
  • Faxinalipterus minimus, originally classified as an early pterosaur, is reinterpreted as a lagerpetid by Kellner et al. (2022).
  • A femur of an indeterminate dinosauromorph is described from the Middle Triassic Dinodontosaurus Assemblage Zone (Pinheiros-Chiniquá Sequence, Brazil) by Müller & Garcia (2022), potentially representing the oldest dinosauromorph from South America reported to date.

General research

  • Gatesy et al. (2022) propose a standard methodological approach for measuring the relative position and orientation of the major segments of the pelvis and hindlimb of extant and fossil archosaurs in three dimensions.
  • A study on the locomotion of extant and extinct archosaurs, reevaluating postulated superiority of early dinosaurs in locomotor function and performance compared with other archosaurs, is published by Cuff et al. (2022).
  • Evidence from molecular analyses of modern and fossil skeletal samples, interpreted as indicating that metabolic rates consistent with endothermy are ancestral to ornithodirans, is presented by Wiemann et al. (2022).
  • A study on the diversification and body size evolution of terrestrial pan-avian archosaurs along the Triassic and Early Jurassic is published by Langer & Godoy (2022)
  • A study on the potential soaring performances of extinct giant birds and pterosaurs is published by Goto et al. (2022).
  • A study on the diversity of avian and non-avian theropod tracks from the Aptian Ninesting Creek site (Gething Formation, British Columbia, Canada) is published by Lockley et al. (2022), who report evidence indicating that the diversity of smaller avian and non-avian theropod tracks outnumbers large theropod morphotypes by about 7:1.
  • Description of archosaur eggshells from the Late Cretaceous El Gallo Formation (Mexico) and a study on the use of the eggshells to infer the environment of the area is published by Cabrera-Hernández et al. (2022).

References

  1. White MA, Bell PR, Campione NE, Sansalone G, Brougham T, Bevitt JJ, Molnar RE, Cook AG, Wroe S, Elliott DA (2022-02-10). "Abdominal contents reveal Cretaceous crocodyliforms ate dinosaurs". Gondwana Research. 106: 281–302. Bibcode:2022GondR.106..281W. doi:10.1016/j.gr.2022.01.016. ISSN 1342-937X. S2CID 246756546.
  2. Venczel M, Codrea VA (2022). "A new late Eocene alligatoroid crocodyliform from Transylvania". Comptes Rendus Palevol. 21 (20): 411–429. doi:10.5852/cr-palevol2022v21a20. S2CID 248879850.
  3. Marinho TS, Martinelli AG, Basilici G, Soares MV, Marconato A, Ribeiro LC, Iori FV (2022). "First Upper Cretaceous notosuchians (Crocodyliformes) from the Uberaba Formation (Bauru Group), southeastern Brazil: enhancing crocodyliform diversity". Cretaceous Research. 129: Article 105000. doi:10.1016/j.cretres.2021.105000. S2CID 238725546.
  4. Iijima M, Qiao Y, Lin W, Peng Y, Yoneda M, Liu J (2022). "An intermediate crocodylian linking two extant gharials from the Bronze Age of China and its human-induced extinction". Proceedings of the Royal Society B: Biological Sciences. 289 (1970): Article ID 20220085. doi:10.1098/rspb.2022.0085. PMC 8905159. PMID 35259993.
  5. Brochu, C.A.; de Celis, A.; Adams, A. J.; Drumheller, S. K.; Nestler, J. H.; Benefit, B.a R.; Grossman, A.; Kirera, F.; Lehmann, T.; Liutkus-Pierce, C.; Manthi, F. K.; McCrossin, M. L.; McNulty, K. P.; Nyaboke Juma, R. (2022). "Giant dwarf crocodiles from the Miocene of Kenya and crocodylid faunal dynamics in the late Cenozoic of East Africa". The Anatomical Record. doi:10.1002/ar.25005.
  6. Butler RJ, Fernandez V, Nesbitt SJ, Leite JV, Gower DJ (2022). "A new pseudosuchian archosaur, Mambawakale ruhuhu gen. et sp. nov., from the Middle Triassic Manda Beds of Tanzania". Royal Society Open Science. 9 (2): Article ID 211622. Bibcode:2022RSOS....911622B. doi:10.1098/rsos.211622. PMC 8826131. PMID 35154797.
  7. Massonne T, Augustin FJ, Matzke AT, Weber E, Böhme M (2022). "A new species of Maomingosuchus from the Eocene of the Na Duong Basin (northern Vietnam) sheds new light on the phylogenetic relationship of tomistomine crocodylians and their dispersal from Europe to Asia". Journal of Systematic Palaeontology. 19 (22): 1551–1585. doi:10.1080/14772019.2022.2054372. S2CID 248909844.
  8. Salas-Gismondi R, Ochoa D, Jouve S, Romero PE, Cardich J, Perez A, DeVries T, Baby P, Urbina M, Carré M (2022). "Miocene fossils from the southeastern Pacific shed light on the last radiation of marine crocodylians". Proceedings of the Royal Society B: Biological Sciences. 289 (1974): Article ID 20220380. doi:10.1098/rspb.2022.0380. PMC 9091840. PMID 35538785.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  9. Rummy P, Wu XC, Clark JM, Zhao Q, Jin CZ, Shibata M, Jin F, Xu X (2022). "A new paralligatorid (Crocodyliformes, Neosuchia) from the middle Cretaceous of Jilin Province, northeastern China". Cretaceous Research. 129: Article 105018. doi:10.1016/j.cretres.2021.105018. S2CID 239651801.
  10. Bona P, Fernandez Blanco MV, Ezcurra MD, von Baczko MB, Desojo JB, Pol D (2022). "On the homology of crocodylian post-dentary bones and their macroevolution throughout Pseudosuchia". The Anatomical Record (in press). doi:10.1002/ar.24873. PMID 35202518. S2CID 247107423.
  11. Sellers KC, Nieto MN, Degrange FJ, Pol D, Clark JM, Middleton KM, Holliday CM (2022). "The effects of skull flattening on suchian jaw muscle evolution". The Anatomical Record (in press). doi:10.1002/ar.24912. PMID 35661427. S2CID 249387665.
  12. Sennikov AG (2022). "On the pseudosuchians Tsylmosuchus donensis and Scythosuchus basileus from the Early Triassic of Eastern Europe". Paleontological Journal. 56 (1): 91–96. doi:10.1134/S0031030121060113. S2CID 248132677.
  13. Damke LV, Pretto FA, Mastrantonio BM, Garcia MS, Da-Rosa ÁA (2022). "New material of Loricata (Archosauria: Pseudosuchia) from the Late Triassic (Carnian, Hyperodapedon Assemblage Zone) of southern Brazil". Journal of South American Earth Sciences. 115: Article 103754. Bibcode:2022JSAES.11503754D. doi:10.1016/j.jsames.2022.103754. S2CID 247431873.
  14. Polet DT, Hutchinson JR (2022). "Estimating Gaits of an Ancient Crocodile-Line Archosaur Through Trajectory Optimization, With Comparison to Fossil Trackways". Frontiers in Bioengineering and Biotechnology. 9: Article 800311. doi:10.3389/fbioe.2021.800311. PMC 8852800. PMID 35186914.
  15. Mujal E, Foth C, Maxwell EE, Seegis D, Schoch RR (2022). "Feeding habits of the Middle Triassic pseudosuchian Batrachotomus kupferzellensis from Germany and palaeoecological implications for archosaurs". Palaeontology. 65 (3): e12597. doi:10.1111/pala.12597. S2CID 248657885.
  16. Ponce DA, Desojo JB, Cerda IA (2022). "Palaeobiological inferences of the aetosaur Aetosauroides scagliai (Archosauria: Pseudosuchia) based on microstructural analyses of its appendicular bones". Historical Biology: An International Journal of Paleobiology (in press): 1–12. doi:10.1080/08912963.2022.2035728. S2CID 247163970.
  17. Dollman KN, Choiniere JN (2022). "Palate evolution in early-branching crocodylomorphs: Implications for homology, systematics, and ecomorphology". The Anatomical Record. doi:10.1002/ar.24993. PMID 35595547.
  18. Ruebenstahl AA, Klein MD, Yi H, Xu X, Clark JM (2022). "Anatomy and relationships of the early diverging Crocodylomorphs Junggarsuchus sloani and Dibothrosuchus elaphros". The Anatomical Record. doi:10.1002/ar.24949. PMID 35699105. S2CID 249645515.
  19. Castanera D, Pascual-Arribas C, Canudo JI, Puértolas-Pascual E (2022). "A new look at Crocodylopodus meijidei: implications for crocodylomorph locomotion". Journal of Vertebrate Paleontology. 41 (5): e2020803. doi:10.1080/02724634.2021.2020803. S2CID 247566740.
  20. Navarro T, Cerda I, Barrios F, Pol D (2022). "Dental histology and attachment tissues in Notosuchus terrestris (Crocodyliformes, Notosuchia): palaeobiological implications". Lethaia. 55 (1): 1–10. doi:10.18261/let.55.1.10. S2CID 249213172.
  21. Sena MV, Andrade RC, Carvalho LB, Azevedo SA, Sayão JM, Oliveira GR (2022). "Paleohistology of the crocodyliform Mariliasuchus amarali Carvalho & Bertini, 1999 (Mesoeucrocodylia, Notosuchia) based on a new specimen from the Upper Cretaceous of Brazil". Comptes Rendus Palevol. 21 (17): 349–361. doi:10.5852/cr-palevol2022v21a17. S2CID 248656756.
  22. Bravo GG, Pol D, Armella MA, Gómez K (2022). "The choanal anatomy of the Sebecus icaeorhinus Simpson, 1937 and the variation of the palatine shape in notosuchians (Crocodyliformes, Mesoeucrocodylia)". Journal of Paleontology: 1–13. doi:10.1017/jpa.2022.48. S2CID 249826743.
  23. Groh SS, Upchurch P, Barrett PM, Day JJ (2022). "How to date a crocodile: estimation of neosuchian clade ages and a comparison of four time-scaling methods" (PDF). Palaeontology. 65 (2): e12589. doi:10.1111/pala.12589. S2CID 247425644.
  24. Cowgill T, Young MT, Schwab JA, Walsh S, Witmer LM, Herrera Y, Dollman KN, Turner AH, Brusatte SL (2022). "Cephalic salt gland evolution in Mesozoic pelagic crocodylomorphs". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlac027.
  25. Darlim G, Lee MS, Walter J, Rabi M (2022). "The impact of molecular data on the phylogenetic position of the putative oldest crown crocodilian and the age of the clade". Biology Letters. 18 (2): Article ID 20210603. doi:10.1098/rsbl.2021.0603. PMC 8825999. PMID 35135314. S2CID 246652848.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  26. Lindblad KT, Moreno-Bernal JW, McKellar RC, Velez MI (2022). "The Northern Crocodile: first report of Borealosuchus (Eusuchia: Crocodylia) from Saskatchewan's Lower Ravenscrag Formation (earliest Paleocene) with implications for biogeography". Canadian Journal of Earth Sciences. doi:10.1139/cjes-2022-0010. S2CID 249051259.
  27. Puértolas-Pascual E, Serrano-Martínez A, Pérez-Pueyo M, Bádenas B, Canudo JI (2022). "New data on the neuroanatomy of basal eusuchian crocodylomorphs (Allodaposuchidae) from the Upper Cretaceous of Spain". Cretaceous Research. 135: Article 105170. doi:10.1016/j.cretres.2022.105170. S2CID 246966830.
  28. Kuzmin IT (2022). "Crocodyliform remains from the Upper Cretaceous of Central Asia – evidence for one of the oldest Crocodylia?". Cretaceous Research: Article 105266. doi:10.1016/j.cretres.2022.105266. S2CID 249355618.
  29. Bona P, Barrios F, Ezcurra MD, Fernández Blanco MV (2022). "The taxonomic status of Notocaiman stromeri (Crocodylia, Alligatoroidea) and the early diversity of South American caimanines". Ameghiniana. 59 (3): 210–220. doi:10.5710/AMGH.27.02.2022.3470. S2CID 247273365.
  30. Martin JE, Richardin P, Perrichon G, Pochat-Cottilloux Y, Phouybanhdyt B, Salaviale C, Adrien J (2022). "The oldest occurrence of Crocodylus in Madagascar and the Holocene crocodylian turnover". Journal of Vertebrate Paleontology: e2063058. doi:10.1080/02724634.2021.2063058. S2CID 249146169.
  31. Vila B, Sellés A, Moreno-Azanza M, Razzolini NL, Gil-Delgado A, Canudo JI, Galobart À (2022). "A titanosaurian sauropod with Gondwanan affinities in the latest Cretaceous of Europe". Nature Ecology & Evolution. 6 (3): 288–296. doi:10.1038/s41559-021-01651-5. PMID 35132183. S2CID 246650381.
  32. Dai H, Li N, Maidment SC, Wei G, Zhou YX, Hu XF, Ma QY, Wang XQ, Hu HQ, Peng GZ (2022). "New Stegosaurs from the Middle Jurassic Lower Member of the Shaximiao Formation of Chongqing, China". Journal of Vertebrate Paleontology. 41 (5): e1995737. doi:10.1080/02724634.2021.1995737. S2CID 247267743.
  33. Averianov AO, Sues HD (2022). "New material and diagnosis of a new taxon of alvarezsaurid (Dinosauria, Theropoda) from the Upper Cretaceous Bissekty Formation of Uzbekistan". Journal of Vertebrate Paleontology. 41 (5): e2036174. doi:10.1080/02724634.2021.2036174. S2CID 247391327.
  34. Agnolín FL, Cerroni MA, Scanferla A, Goswami A, Paulina-Carabajal A, Halliday T, Cuff AR, Reuil S (2022). "First definitive abelisaurid theropod from the Late Cretaceous of Northwestern Argentina". Journal of Vertebrate Paleontology. 41 (4): e2002348. doi:10.1080/02724634.2021.2002348. S2CID 246766133.
  35. ^ Rozadilla, Sebastián; Brissón-Egli, Federico; Lisandro Agnolín, Federico; Aranciaga-Rolando, Alexis Mauro; Novas, Fernando Emilio (2022). "A new hadrosaurid (Dinosauria: Ornithischia) from the Late Cretaceous of northern Patagonia and the radiation of South American hadrosaurids". Journal of Systematic Palaeontology. 19 (17): 1207–1235. doi:10.1080/14772019.2021.2020917. S2CID 247122005.
  36. Mateus O, Estraviz-López D (2022). "A new theropod dinosaur from the Early Cretaceous (Barremian) of Cabo Espichel, Portugal: Implications for spinosaurid evolution". PLOS ONE. 17 (2): e0262614. Bibcode:2022PLoSO..1762614M. doi:10.1371/journal.pone.0262614. PMC 8849621. PMID 35171930.
  37. Aranciaga Rolando AM, Motta MJ, Agnolín FL, Manabe M, Tsuihiji T, Novas FE (2022). "A large Megaraptoridae (Theropoda: Coelurosauria) from Upper Cretaceous (Maastrichtian) of Patagonia, Argentina". Scientific Reports. 12 (1): Article number 6318. doi:10.1038/s41598-022-09272-z. PMC 9042913. PMID 35474310.
  38. Rolando MA, Garcia Marsà JA, Agnolín FL, Motta MJ, Rodazilla S, Novas FE (2022). "The sauropod record of Salitral Ojo del Agua: An Upper Cretaceous (Allen Formation) fossiliferous locality from northern Patagonia, Argentina". Cretaceous Research. 129: Article 105029. doi:10.1016/j.cretres.2021.105029. ISSN 0195-6671. S2CID 240577726.
  39. Ji S, Zhang P (2022). "First new genus and species of basal iguanodontian dinosaur (Ornithischia: Ornithopoda) from southern China". Acta Geoscientica Sinica. 43 (1): 1–10. doi:10.3975/cagsb.2021.090701.
  40. Averianov, Alexander O.; Lopatin, Alexey V. (2022-02-19). "A new alvarezsaurid theropod dinosaur from the Upper Cretaceous of Gobi Desert, Mongolia". Cretaceous Research. 135: Article 105168. doi:10.1016/j.cretres.2022.105168. ISSN 0195-6671. S2CID 247000540.
  41. Pei, R.; Qin, Yuying; Wen, Aishu; Zhao, Q.; Wang, Z.; Liu, Z.; Guo, W.; Liu, P.; Ye, W.; Wang, L.; Yin, Z.; Dai, R.; Xu, X. (2022). "A New Troodontid from the Upper Cretaceous Gobi Basin of Inner Mongolia, China". Cretaceous Research. 130: Article 105052. doi:10.1016/j.cretres.2021.105052. S2CID 244186762.
  42. Kobayashi Y, Takasaki R, Fiorillo AR, Chinzorig T, Hikida Y (2022). "New therizinosaurid dinosaur from the marine Osoushinai Formation (Upper Cretaceous, Japan) provides insight for function and evolution of therizinosaur claws". Scientific Reports. 12 (1): Article number 7207. doi:10.1038/s41598-022-11063-5. PMC 9065154. PMID 35504901.
  43. Dalman SG, Lucas SG, Jasinski SE, Longrich NR (2022). "Sierraceratops turneri, a new chasmosaurine ceratopsid from the Hall Lake Formation (Upper Cretaceous) of south-central New Mexico". Cretaceous Research. 130: Article 105034. doi:10.1016/j.cretres.2021.105034. S2CID 244210664.
  44. ^ Paul GS, Persons WS, Van Raalte J (2022). "The Tyrant Lizard King, Queen and Emperor: Multiple Lines of Morphological and Stratigraphic Evidence Support Subtle Evolution and Probable Speciation Within the North American Genus Tyrannosaurus". Evolutionary Biology. 49 (2): 156–179. doi:10.1007/s11692-022-09561-5. S2CID 247200214.
  45. Yao X, Barrett PM, Lei Y, Xu X, Bi S (2022). "A new early-branching armoured dinosaur from the Lower Jurassic of southwestern China". eLife. 11: e75248. doi:10.7554/eLife.75248. PMC 8929930. PMID 35289749.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  46. Wyenberg-Henzler T (2022). "Ecomorphospace occupation of large herbivorous dinosaurs from Late Jurassic through to Late Cretaceous time in North America". PeerJ. 10: e13174. doi:10.7717/peerj.13174. PMC 9009330. PMID 35433123.
  47. Zhou Y, Dai H, Yu H, Ma Q, Tan C, Li N, Lin Y, Li D (2022). "Zircon geochronology of the new dinosaur fauna in the Middle Jurassic lower Shaximiao Formation in Chongqing, SW China". Palaeogeography, Palaeoclimatology, Palaeoecology. 592: Article 110894. Bibcode:2022PPP...592k0894Z. doi:10.1016/j.palaeo.2022.110894. S2CID 247000432.
  48. Klein H, Gierliński GD, Oukassou M, Saber H, Lallensack JN, Lagnaoui A, Hminna A, Charrière A (2022). "Theropod and ornithischian dinosaur track assemblages from Middle to ?Late Jurassic deposits of the Central High Atlas, Morocco". Historical Biology: An International Journal of Paleobiology (in press): 1–27. doi:10.1080/08912963.2022.2042808. S2CID 247427512.
  49. Averianov AO, Sizov AV, Grigoriev DV, Pestchevitskaya EB, Vitenko DD, Skutschas PP (2022). "New data on dinosaurs from the Lower Cretaceous Murtoi Formation of Transbaikalia, Russia". Cretaceous Research: Article 105287. doi:10.1016/j.cretres.2022.105287. S2CID 249827079.
  50. Zhang H, Yu D, Feng Y, Pei R, Zhou CF (2022). "A Lujiatun-like dinosaurian assemblage from the Jehol Biota of Ningcheng, Inner Mongolia, Northeast China". Acta Palaeontologica Polonica. 67. doi:10.4202/app.00975.2022. S2CID 249905746.
  51. Lallensack JN, Owais A, Falkingham PL, Breithaupt BH, Sander PM (2022). "How to verify fossil tracks: the first record of dinosaurs from Palestine". Historical Biology: An International Journal of Paleobiology: 1–11. doi:10.1080/08912963.2022.2069020. S2CID 248589676.
  52. Enriquez NJ, Campione NE, White MA, Fanti F, Sissons RL, Sullivan C, Vavrek M, Bell PR (2022). "The dinosaur tracks of Tyrants Aisle: An Upper Cretaceous ichnofauna from Unit 4 of the Wapiti Formation (upper Campanian), Alberta, Canada". PLOS ONE. 17 (2): e0262824. Bibcode:2022PLoSO..1762824E. doi:10.1371/journal.pone.0262824. PMC 8809565. PMID 35108301.
  53. Martin JE, Hassler A, Montagnac G, Therrien F, Balter V (2022). "The stability of dinosaur communities before the K−Pg boundary: A perspective from southern Alberta using calcium isotopes as a dietary proxy". GSA Bulletin (in press). doi:10.1130/B36222.1. S2CID 246756450.
  54. He Q, Chen Y, Huang J, Xing L, Jiang Q, Gui Z, Zhang W, Hu Y (2022). "Isotope compositions of dinosaur eggs and associated depositional settings in the Upper Cretaceous Huizhou Formation from the Qiyunshan area, Anhui Province, China: implications for paleoenvironmental reconstruction". Historical Biology: An International Journal of Paleobiology: 1–12. doi:10.1080/08912963.2022.2084695.
  55. Tahoun M, Engeser M, Namasivayam V, Sander PM, Müller CE (2022). "Chemistry and Analysis of Organic Compounds in Dinosaurs". Biology. 11 (5): Article 670. doi:10.3390/biology11050670. PMID 35625398.
  56. Brown EE, Butler RJ, Barrett PM, Maidment SC (2022). "Assessing conflict between early neornithischian tree topologies". Journal of Systematic Palaeontology. 19 (17): 1183–1206. doi:10.1080/14772019.2022.2032433. S2CID 247567256.
  57. Cullen TM, Zhang S, Spencer J, Cousens B (2022). "Sr-O-C isotope signatures reveal herbivore niche-partitioning in a Cretaceous ecosystem". Palaeontology. 65 (2): e12591. doi:10.1111/pala.12591. S2CID 247484805.
  58. Sánchez-Fenollosa S, Verdú FJ, Suñer M, de Santisteban C (2022). "Tracing Late Jurassic ornithopod diversity in the eastern Iberian Peninsula: Camptosaurus-like postcranial remains from Alpuente (Valencia, Spain)". Journal of Iberian Geology. 48 (1): 65–78. doi:10.1007/s41513-021-00182-z. S2CID 245804125.
  59. Rotatori FM, Moreno-Azanza M, Mateus O (2022). "Reappraisal and new material of the holotype of Draconyx loureiroi (Ornithischia: Iguanodontia) provide insights on the tempo and modo of evolution of thumb-spiked dinosaurs". Zoological Journal of the Linnean Society. 195: 125–156. doi:10.1093/zoolinnean/zlab113.
  60. Gasulla JM, Escaso F, Narváez I, Sanz JL, Ortega F (2022). "New Iguanodon bernissartensis Axial Bones (Dinosauria, Ornithopoda) from the Early Cretaceous of Morella, Spain". Diversity. 14 (2): Article 63. doi:10.3390/d14020063.
  61. García-Cobeña J, Verdú FJ, Cobos A (2022). "Abundance of large ornithopod dinosaurs in the El Castellar Formation (Hauterivian-Barremian, Lower Cretaceous) of the Peñagolosa sub-basin (Teruel, Spain)". Journal of Iberian Geology. 48 (1): 107–127. doi:10.1007/s41513-021-00185-w. S2CID 246029826.
  62. Samathi A, Suteethorn S (2022). "New materials of iguanodontians (Dinosauria: Ornithopoda) from the Lower Cretaceous Khok Kruat Formation, Ubon Ratchathani, Thailand". Zootaxa. 5094 (2): 301–320. doi:10.11646/zootaxa.5094.2.5. PMID 35391450. S2CID 246588650.
  63. Averianov AO, Lopatin AV, Tsogtbaatar K (2022). "Taxonomic attribution of a juvenile hadrosauroid dinosaur from the Upper Cretaceous Bayinshire Formation of Mongolia". Doklady Rossijskoj Akademii Nauk. Nauki O Zemle. 503 (1): 26–31. doi:10.31857/S2686739722030033. S2CID 246698076.
  64. Xing L, Niu K, Yang TR, Wang D, Miyashita T, Mallon JC (2022). "Hadrosauroid eggs and embryos from the Upper Cretaceous (Maastrichtian) of Jiangxi Province, China". BMC Ecology and Evolution. 22 (1): Article number 60. doi:10.1186/s12862-022-02012-x. PMC 9088101. PMID 35534805.
  65. Augustin FJ, Dumbravă MD, Bastiaans D, Csiki-Sava Z (2022). "Reappraisal of the braincase anatomy of the ornithopod dinosaurs Telmatosaurus and Zalmoxes from the Upper Cretaceous of the Haţeg Basin (Romania) and the taxonomic reassessment of some previously referred specimens". PalZ. doi:10.1007/s12542-022-00621-x. S2CID 249319059.
  66. Ramírez-Velasco AA (2022). "Phylogenetic and biogeography analysis of Mexican hadrosauroids". Cretaceous Research: Article 105267. doi:10.1016/j.cretres.2022.105267. S2CID 249559319.
  67. Wyenberg-Henzler T, Patterson RT, Mallon JC (2022). "Ontogenetic dietary shifts in North American hadrosaurids (Dinosauria: Ornithischia)". Cretaceous Research. 135: Article 105177. doi:10.1016/j.cretres.2022.105177. S2CID 247096035.
  68. Bertozzo F, Bolotsky I, Bolotsky YL, Poberezhskiy A, Ruffell A, Godefroit P, Murphy E (2022). "A pathological ulna of Amurosaurus riabinini from the Upper Cretaceous of Far Eastern Russia". Historical Biology: An International Journal of Paleobiology (in press): 1–8. doi:10.1080/08912963.2022.2034805. S2CID 247003496.
  69. Scott EE, Chiba K, Fanti F, Saylor BZ, Evans DC, Ryan MJ (2022). "Taphonomy of a monodominant Gryposaurus sp. bonebed from the Oldman Formation (Campanian) of Alberta, Canada". Canadian Journal of Earth Sciences. 59 (6): 389–405. doi:10.1139/cjes-2020-0200.
  70. Libke C, Bell PR, Somers CM, McKellar RC (2022). "New scale type from a small-bodied hadrosaur in the Frenchman Formation of southern Saskatchewan: potential implications for integumentary diversity in Edmontosaurus annectens". Cretaceous Research. 136: Article 105215. doi:10.1016/j.cretres.2022.105215. S2CID 247898494.
  71. Nirody JA, Goodwin MB, Horner JR, Huynh TL, Colbert MW, Smith DK, Evans DC (2022). "Quantifying vascularity in the frontoparietal dome of Stegoceras validum (Dinosauria: Pachycephalosauridae) from high resolution CT scans". Journal of Vertebrate Paleontology. 41 (5): e2036991. doi:10.1080/02724634.2021.2036991. S2CID 247527472.
  72. Hu J, Forster CA, Xu X, Zhao Q, He Y, Han F (2022). "Computed tomographic analysis of the dental system of three Jurassic ceratopsians and implications for the evolution of tooth replacement pattern and diet in early-diverging ceratopsians". eLife. 11: e76676. doi:10.7554/eLife.76676. PMC 9068210. PMID 35441592.
  73. Bell PR, Hendrickx C, Pittman M, Kaye TG (2022). "Oldest preserved umbilical scar reveals dinosaurs had 'belly buttons'". BMC Biology. 20 (1): Article number 132. doi:10.1186/s12915-022-01329-9. PMC 9172161. PMID 35672741.
  74. Son M, Lee Y, Zorigt B, Kobayashi Y, Park J, Lee S, Kim S, Lee KY (2022). "A new juvenile Yamaceratops (Dinosauria, Ceratopsia) from the Javkhlant Formation (Upper Cretaceous) of Mongolia". PeerJ. 10: e13176. doi:10.7717/peerj.13176. PMC 8992648. PMID 35402094.
  75. Baag SJ, Lee YN (2022). "Bone histology on Koreaceratops hwaseongensis (Dinosauria: Ceratopsia) from the Lower Cretaceous of South Korea". Cretaceous Research. 134: Article 105150. doi:10.1016/j.cretres.2022.105150. S2CID 246340350.
  76. Mallon JC, Holmes RB, Bamforth EL, Schumann D (2022). "The record of Torosaurus (Ornithischia: Ceratopsidae) in Canada and its taxonomic implications". Zoological Journal of the Linnean Society. 195 (1): 157–171. doi:10.1093/zoolinnean/zlab120.
  77. D'Anastasio R, Cilli J, Bacchia F, Fanti F, Gobbo G, Capasso L (2022). "Histological and chemical diagnosis of a combat lesion in Triceratops". Scientific Reports. 12 (1): Article number 3941. doi:10.1038/s41598-022-08033-2. PMC 8990019. PMID 35393445.
  78. Fiorillo AR, McCarthy PJ, Kobayashi Y, Suarez MB (2022). "Cretaceous Dinosaurs across Alaska Show the Role of Paleoclimate in Structuring Ancient Large-Herbivore Populations". Geosciences. 12 (4): Article 161. Bibcode:2022Geosc..12..161F. doi:10.3390/geosciences12040161.
  79. Schade M, Stumpf S, Kriwet J, Kettler C, Pfaff C (2022). "Neuroanatomy of the nodosaurid Struthiosaurus austriacus (Dinosauria: Thyreophora) supports potential ecological differentiations within Ankylosauria". Scientific Reports. 12 (1): Article number 144. Bibcode:2022NatSR..12..144S. doi:10.1038/s41598-021-03599-9. PMC 8741922. PMID 34996895.
  80. Frauenfelder TG, Bell PR, Brougham T, Bevitt JJ, Bicknell RD, Kear BP, Wroe S, Campione NE (2022). "New Ankylosaurian Cranial Remains From the Lower Cretaceous (Upper Albian) Toolebuc Formation of Queensland, Australia". Frontiers in Earth Science. 10: Article 803505. doi:10.3389/feart.2022.803505.
  81. Schade M, Ansorge J (2022). "New thyreophoran dinosaur material from the Early Jurassic of northeastern Germany". PalZ. 96 (2): 303–311. doi:10.1007/s12542-022-00605-x.
  82. Lefebvre R, Houssaye A, Mallison H, Cornette R, Allain R (2022). "A path to gigantism: Three-dimensional study of the sauropodomorph limb long bone shape variation in the context of the emergence of the sauropod bauplan". Journal of Anatomy (in press). doi:10.1111/joa.13646. PMID 35249216. S2CID 247251261.
  83. Otero, A.; Hutchinson, J. R. (2022). "Body Size Evolution and Locomotion in Sauropodomorpha: What the South American Record Tells Us". In A. Otero; J. L. Carballido; D. Pol (eds.). South American Sauropodomorph Dinosaurs. Record, Diversity and Evolution. Springer Earth System Sciences. Springer. pp. 443–472. doi:10.1007/978-3-030-95959-3_12. ISBN 978-3-030-95958-6.
  84. Langer, M. C.; Marsola, J. C. A.; Müller, R. T.; Bronzati, M.; Bittencourt, J. S.; Apaldetti, C.; Ezcurra, M. D. (2022). "The Early Radiation of Sauropodomorphs in the Carnian (Late Triassic) of South America". In A. Otero; J. L. Carballido; D. Pol (eds.). South American Sauropodomorph Dinosaurs. Record, Diversity and Evolution. Springer Earth System Sciences. Springer. pp. 1–49. doi:10.1007/978-3-030-95959-3_1. ISBN 978-3-030-95958-6.
  85. Müller RT (2022). "On the Presence and Shape of Anterolateral Scars in the Ontogenetic Series of Femora for Two Early Sauropodomorph Dinosaurs from the Upper Triassic of Brazil". Paleontological Research. 26 (1): 1–7. doi:10.2517/PR200001. S2CID 245488555.
  86. Ballell A, Rayfield EJ, Benton MJ (2022). "Walking with early dinosaurs: appendicular myology of the Late Triassic sauropodomorph Thecodontosaurus antiquus". Royal Society Open Science. 9 (1): Article ID 211356. Bibcode:2022RSOS....911356B. doi:10.1098/rsos.211356. PMC 8767213. PMID 35116154.
  87. Müller RT, Garcia MS (2022). "A sauropodomorph (Dinosauria, Saurischia) specimen from the Upper Triassic of southern Brazil and the early increase in size in Sauropodomorpha". Journal of Vertebrate Paleontology. 41 (4). doi:10.1080/02724634.2021.2002879. S2CID 246787098.
  88. Apaldetti, C.; Martínez, R. N. (2022). "South American Non-Gravisaurian Sauropodiformes and the Early Trend Towards Gigantism". In A. Otero; J. L. Carballido; D. Pol (eds.). South American Sauropodomorph Dinosaurs. Record, Diversity and Evolution. Springer Earth System Sciences. Springer. pp. 93–130. doi:10.1007/978-3-030-95959-3_3. ISBN 978-3-030-95958-6.
  89. Otero A, Pol D (2022). "Ontogenetic changes in the postcranial skeleton of Mussaurus patagonicus (Dinosauria, Sauropodomorpha) and their impact on the phylogenetic relationships of early sauropodomorphs". Journal of Systematic Palaeontology. 19 (21): 1467–1516. doi:10.1080/14772019.2022.2039311. S2CID 248189985.
  90. Taylor MP (2022). "Almost all known sauropod necks are incomplete and distorted". PeerJ. 10: e12810. doi:10.7717/peerj.12810. PMC 8793732. PMID 35127288.
  91. Sciscio L, Belvedere M, Meyer CA, Marty D (2022). "Sauropod Trackway Morphometrics: An Exploratory Study Using Highway A16 Excavation at the Courtedoux-Tchâfouè Track Site (Late Jurassic, NW Switzerland)". Frontiers in Earth Science. 10: Article 805442. doi:10.3389/feart.2022.805442.
  92. Sharma A, Singh S, Satheesh SR (2022). "The first turiasaurian sauropod of India reported from the Middle Jurassic (Bathonian) sediments of Jaisalmer Basin, Rajasthan, India". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 304 (2): 187–203. doi:10.1127/njgpa/2022/1064. S2CID 249030842.
  93. Peterson JE, Lovelace D, Connely M, McHugh JB (2022). "A novel feeding mechanism of diplodocid sauropods revealed in an Apatosaurine skull from the Upper Jurassic Nail Quarry (Morrison Formation) at Como Bluff, Wyoming, USA". Palaeontologia Electronica. 25 (2): Article number 25.2.a21. doi:10.26879/1216.
  94. Woodruff DC, Wolff ED, Wedel MJ, Dennison S, Witmer LM (2022). "The first occurrence of an avian-style respiratory infection in a non-avian dinosaur". Scientific Reports. 12 (1): Article number 1954. Bibcode:2022NatSR..12.1954W. doi:10.1038/s41598-022-05761-3. PMC 8831536. PMID 35145134.
  95. Cerda IA, Novas FE, Carballido JL, Salgado L (2022). "Osteohistology of the hyperelongate hemispinous processes of Amargasaurus cazaui (Dinosauria: Sauropoda): Implications for soft tissue reconstruction and functional significance". Journal of Anatomy. 240 (6): 1005–1019. doi:10.1111/joa.13659. PMC 9119615. PMID 35332552. S2CID 247677750.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  96. Tan C, Yu HD, Ren XX, Dai H, M QY, Xiong C, Zhao ZQ, You HL (2022). "Pathological ribs in sauropod dinosaurs from the Middle Jurassic of Yunyang, Chongqing, Southwestern China". Historical Biology (In press): 1–8. doi:10.1080/08912963.2022.2045979. S2CID 247172509.
  97. Carballido, J. L.; Bellardini, F.; Salgado, L. (2022). "The Rise of Non-Titanosaur Macronarians in South America". In A. Otero; J. L. Carballido; D. Pol (eds.). South American Sauropodomorph Dinosaurs. Record, Diversity and Evolution. Springer Earth System Sciences. Springer. pp. 237–268. doi:10.1007/978-3-030-95959-3_7. ISBN 978-3-030-95958-6.
  98. Pittman M, Enriquez NJ, Bell PR, Kaye TG, Upchurch P (2022). "Newly detected data from Haestasaurus and review of sauropod skin morphology suggests Early Jurassic origin of skin papillae". Communications Biology. 5 (1): Article number 122. doi:10.1038/s42003-022-03062-z. PMC 8831608. PMID 35145214.
  99. Bellardini F, Coria RA, Pino DA, Windholz GJ, Baiano MA, Martinelli AG (2022). "Osteology and phylogenetic relationships of Ligabuesaurus leanzai (Dinosauria: Sauropoda) from the Early Cretaceous of the Neuquén Basin, Patagonia, Argentina". Zoological Journal of the Linnean Society (in press). zlac003. doi:10.1093/zoolinnean/zlac003.
  100. Sakaki H, Winkler DE, Kubo T, Hirayama R, Uno H, Miyata S, Endo H, Sasaki K, Takisawa T, Kubo MO (2022). "Non-occlusal dental microwear texture analysis of a titanosauriform sauropod dinosaur from the Upper Cretaceous (Turonian) Tamagawa Formation, northeastern Japan". Cretaceous Research. 136: Article 105218. doi:10.1016/j.cretres.2022.105218. S2CID 247919470.
  101. Carballido, J. L.; Otero, A.; Mannion, P. D.; Salgado, L.; Pérez Moreno, A. (2022). "Titanosauria: A Critical Reappraisal of Its Systematics and the Relevance of the South American Record". In A. Otero; J. L. Carballido; D. Pol (eds.). South American Sauropodomorph Dinosaurs. Record, Diversity and Evolution. Springer Earth System Sciences. Springer. pp. 269–298. doi:10.1007/978-3-030-95959-3_8. ISBN 978-3-030-95958-6.
  102. Páramo A, Escaso F, Mocho P, Marcos-Fernández F, Sanz JL, Ortega F (2022). "3D Geometric morphometrics of the hind limb in the titanosaur sauropods from Lo Hueco (Cuenca, Spain)". Cretaceous Research. 134: Article 105147. doi:10.1016/j.cretres.2022.105147.
  103. Tomaselli MB, Ortiz David LB, González Riga BJ, Coria JP, Mercado CR, Guerra M, Tiviroli GS (2022). "New titanosaurian sauropod tracks with exceptionally well-preserved claw impressions from the Upper Cretaceous of Argentina". Cretaceous Research. 129: Article 104990. doi:10.1016/j.cretres.2021.104990. S2CID 238695181.
  104. Fiorelli LE, Martinelli AG, da Silva JI, Hechenleitner EM, Soares MV, Silva Junior JC, da Silva JC, Borges ÉM, Ribeiro LC, Marconato A, Basilici G, Marino TS (2022). "First titanosaur dinosaur nesting site from the Late Cretaceous of Brazil". Scientific Reports. 12 (1): Article number 5091. Bibcode:2022NatSR..12.5091F. doi:10.1038/s41598-022-09125-9. PMC 8948192. PMID 35332244.
  105. Dhiman H, Verma V, Prasad GV (2022). "First ovum-in-ovo pathological titanosaurid egg throws light on the reproductive biology of sauropod dinosaurs". Scientific Reports. 12 (1): Article number 9362. doi:10.1038/s41598-022-13257-3. PMID 35672433.
  106. Santucci, R. M.; Filippi, L. S. (2022). "Last Titans: Titanosaurs From the Campanian–Maastrichtian Age". In A. Otero; J. L. Carballido; D. Pol (eds.). South American Sauropodomorph Dinosaurs. Record, Diversity and Evolution. Springer Earth System Sciences. Springer. pp. 341–391. doi:10.1007/978-3-030-95959-3_10. ISBN 978-3-030-95958-6.
  107. Rigby SL, Poropat SF, Mannion PD, Pentland AH, Sloan T, Rumbold SJ, Webster CB, Elliott DA (2022). "A juvenile Diamantinasaurus matildae (Dinosauria: Titanosauria) from the Upper Cretaceous Winton Formation of Queensland, Australia, with implications for sauropod ontogeny". Journal of Vertebrate Paleontology. in press: e2047991. doi:10.1080/02724634.2021.2047991. S2CID 248187418.
  108. Preuschoft H (2022). "Mechanical analysis of the wide-hipped titanosaur Savannasaurus elliottorum". Palaeobiodiversity and Palaeoenvironments. doi:10.1007/s12549-022-00527-1.
  109. Pal S, Ayyasami K (2022-06-27). "The lost titan of Cauvery". Geology Today. 38 (3): 112–116. doi:10.1111/gto.12390. ISSN 0266-6979.
  110. Voegele KK, Bonnan MF, Siegler S, Langel CR, Lacovara KJ (2022). "Constraining Morphologies of Soft Tissues in Extinct Vertebrates Using Multibody Dynamic Simulations: A Case Study on Articular Cartilage of the Sauropod Dreadnoughtus". Frontiers in Earth Science. 10: 786247. doi:10.3389/feart.2022.786247.
  111. Brum AS, Bandeira KL, Sayão JM, Campos DA, Kellner AW (2022). "Microstructure of axial bones of lithostrotian titanosaurs (Neosauropoda: Sauropodomorpha) shows extended fast-growing phase". Cretaceous Research. 136: Article 105220. doi:10.1016/j.cretres.2022.105220. S2CID 247911738.
  112. Averianov AO, Lopatin AV (2022). "New data on Late Cretaceous sauropods from the Bostobe Formation of northeastern Aral Sea region (Kazakhstan)". Doklady Rossijskoj Akademii Nauk. Nauki O Zemle. 503 (1): 32–35. doi:10.31857/S2686739722030045. S2CID 246694849.
  113. Lallensack JN, Falkingham PL (2022). "A new method to calculate limb phase from trackways reveals gaits of sauropod dinosaurs". Current Biology. 32 (7): 1635–1640.e4. doi:10.1016/j.cub.2015.04.041. PMID 35240050.
  114. Fernández, M. S.; Vila, B.; Moreno-Azanza, M. (2022). "Eggs, Nests, and Reproductive Biology of Sauropodomorph Dinosaurs from South America". In A. Otero; J. L. Carballido; D. Pol (eds.). South American Sauropodomorph Dinosaurs. Record, Diversity and Evolution. Springer Earth System Sciences. Springer. pp. 393–441. doi:10.1007/978-3-030-95959-3_11. ISBN 978-3-030-95958-6.
  115. Keller T, Or D (2022). "Farm vehicles approaching weights of sauropods exceed safe mechanical limits for soil functioning". Proceedings of the National Academy of Sciences of the United States of America. 119 (21): e2117699119. doi:10.1073/pnas.2117699119. PMC 9173810. PMID 35576469. S2CID 248831820.
  116. Hendrickx C, Bell PR, Pittman M, Milner AR, Cuesta E, O'Connor J, Loewen M, Currie PJ, Mateus O, Kaye TG, Delcourt R (2022). "Morphology and distribution of scales, dermal ossifications, and other non-feather integumentary structures in non-avialan theropod dinosaurs". Biological Reviews. 97 (3): 960–1004. doi:10.1111/brv.12829. PMID 34991180. S2CID 245820672.
  117. Lockley MG, Kim SH, Kim KS, Bae SM, Kim JY, Xing L (2022). "A high-density Grallator assemblage from the Haman Formation (Cretaceous), Korea: implications for Cretaceous distribution of grallatorids in east Asia". Historical Biology: An International Journal of Paleobiology (in press): 1–9. doi:10.1080/08912963.2021.2018687. S2CID 245683766.
  118. Herrera-Castillo CM, Moratalla JJ, Belaústegui Z, Marugán-Lobón J, Martín-Abad H, Nebreda SM, López-Archilla AI, Buscalioni AD (2022). "A theropod trackway providing evidence of a pathological foot from the exceptional locality of Las Hoyas (upper Barremian, Serranía de Cuenca, Spain)". PLOS ONE. 17 (4): e0264406. doi:10.1371/journal.pone.0264406. PMC 8985934. PMID 35385476.
  119. Monvoisin E, Allain R, Buffetaut E, Picot L (2022). "New data on the theropod diversity from the Middle to Late Jurassic of the Vaches Noires cliffs (Normandy, France)". Geodiversitas. 44 (12): 385–415. doi:10.5252/geodiversitas2022v44a12 (inactive 2022-04-03).{{cite journal}}: CS1 maint: DOI inactive as of April 2022 (link)
  120. Isasmendi E, Torices A, Canudo JI, Currie PJ, Pereda-Suberbiola X (2022). "Upper Cretaceous European theropod palaeobiodiversity, palaeobiogeography and the intra-Maastrichtian faunal turnover: new contributions from the Iberian fossil site of Laño" (PDF). Papers in Palaeontology. 8 (1): e1419. doi:10.1002/spp2.1419. hdl:10810/56781. S2CID 246028305.
  121. Padian K (2022). "Why tyrannosaurid forelimbs were so short: An integrative hypothesis". Acta Palaeontologica Polonica. 67 (1): 63–76. doi:10.4202/app.00921.2021. S2CID 247871788.
  122. De Oliveira LM, Oliveira ÉV, Fambrini GL (2022). "The first dinosaur from the Jurassic Aliança Formation of northeastern Brazil, west Gondwana: A basal Neotheropoda and its age and paleobiogeographical significance". Journal of South American Earth Sciences. 116: Article 103835. doi:10.1016/j.jsames.2022.103835. S2CID 248596028.
  123. Salem BS, Lamanna MC, O'Connor PM, El-Qot GM, Shaker F, Thabet WA, El-Sayed S, Sallam HM (2022). "First definitive record of Abelisauridae (Theropoda: Ceratosauria) from the Cretaceous Bahariya Formation, Bahariya Oasis, Western Desert of Egypt". Royal Society Open Science. 9 (6): Article ID 220106. doi:10.1098/rsos.220106. PMC 9174736. PMID 35706658.
  124. Delcourt R, Langer MC (2022). "A small abelisaurid caudal vertebra from the Bauru Basin, Presidente Prudente Formation (Late Cretaceous), Brazil adds information about the diversity and distribution of theropods in central South America". Journal of South American Earth Sciences. 116: Article 103879. doi:10.1016/j.jsames.2022.103879.
  125. Baiano MA, Cerda IA (2022). "Osteohistology of Aucasaurus garridoi (Dinosauria, Theropoda, Abelisauridae): inferences on lifestyle and growth strategy". Historical Biology: An International Journal of Paleobiology: 1–12. doi:10.1080/08912963.2022.2063052. S2CID 248288065.
  126. Fabbri M, Navalón G, Benson R, Pol D, O'Connor J, Bhullar BS, Erickson GM, Norell MA, Orkney A, Lamanna MC, Zouhri S, Becker J, Emke A, Dal Sasso C, Bindellini G, Maganuco S, Auditore M, Ibrahim N (2022-03-23). "Subaqueous foraging among carnivorous dinosaurs". Nature. 603 (7903): 852–857. doi:10.1038/s41586-022-04528-0. PMID 35322229. S2CID 247630374.
  127. Isasmendi E, Navarro-Lorbés P, Sáez-Benito P, Viera LI, Torices A, Pereda-Suberbiola X (2022). "New contributions to the skull anatomy of spinosaurid theropods: Baryonychinae maxilla from the Early Cretaceous of Igea (La Rioja, Spain)". Historical Biology: An International Journal of Paleobiology: 1–15. doi:10.1080/08912963.2022.2069019. S2CID 248906462.
  128. Barker CT, Lockwood JA, Naish D, Brown S, Hart A, Tulloch E, Gostling NJ (2022). "A European giant: a large spinosaurid (Dinosauria: Theropoda) from the Vectis Formation (Wealden Group, Early Cretaceous), UK". PeerJ. 10: e13543. doi:10.7717/peerj.13543. PMC 9188774. PMID 35702254.
  129. Kotevski J, Poropat SF (2022). "On the first dinosaur tooth reported from Australia (Theropoda: Megaraptoridae)". Alcheringa: An Australasian Journal of Palaeontology: 1–6. doi:10.1080/03115518.2022.2071463. S2CID 249053647.
  130. Yu K, Bolotsky I, Sun W, Gao Y, Shen F, Wu W (2022). "First discovery of theropod teeth from the Nenjiang Formation (early Campanian) in the Songliao Basin, northeast China". Historical Biology: 1–9. doi:10.1080/08912963.2022.2084692.
  131. Krumenacker LJ, Zanno LE, Sues HD (2022). "A partial tyrannosauroid femur from the mid-Cretaceous Wayan Formation of eastern Idaho, USA". Journal of Paleontology: 1–10. doi:10.1017/jpa.2022.42. S2CID 249530217.
  132. Voris JT, Zelenitsky DK, Therrien F, Ridgely RC, Currie PJ, Witmer LM (2022). "Two exceptionally preserved juvenile specimens of Gorgosaurus libratus (Tyrannosauridae, Albertosaurinae) provide new insight into the timing of ontogenetic changes in tyrannosaurids". Journal of Vertebrate Paleontology. in press: e2041651. doi:10.1080/02724634.2021.2041651. S2CID 248197540.
  133. Yun CG (2022). "Frontal bone anatomy of Teratophoneus curriei (Theropoda: Tyrannosauridae) from the Upper Cretaceous Kaiparowits Formation of Utah" (PDF). Acta Palaeontologica Romaniae. 18 (1): 51–64. doi:10.35463/j.apr.2022.01.06.
  134. Foster W, Brusatte SL, Carr TD, Williamson TE, Yi L, Lü J (2022). "The cranial anatomy of the long-snouted tyrannosaurid dinosaur Qianzhousaurus sinensis from the Upper Cretaceous of China". Journal of Vertebrate Paleontology. 41 (4): e1999251. doi:10.1080/02724634.2021.1999251. S2CID 246799243.
  135. Kim SH, Lee YN, Park JY, Lee S, Winkler DA, Jacobs LL, Barsbold R (2022). "A new species of Osteoglossomorpha (Actinopterygii: Teleostei) from the Upper Cretaceous Nemegt Formation of Mongolia: paleobiological and paleobiogeographic implications". Cretaceous Research. 135: Article 105214. doi:10.1016/j.cretres.2022.105214. S2CID 247637952.
  136. Bouabdellah F, Lessner E, Benoit J (2022). "The rostral neurovascular system of Tyrannosaurus rex". Palaeontologia Electronica. 25 (1): Article number 25.1.1.a3. doi:10.26879/1178.
  137. Xi Y, Sullivan C, Tan Q, Xu X (2022). "New ornithomimosaurian (Dinosauria: Theropoda) pelvis from the Upper Cretaceous Erlian Formation of Nei Mongol, north China". Cretaceous Research. 137: Article 105234. doi:10.1016/j.cretres.2022.105234. S2CID 248351038.
  138. Nottrodt RE (2022). "First articulated ornithomimid specimens from the upper Maastrichtian Scollard Formation of Alberta, Canada". Journal of Vertebrate Paleontology. 41 (5): e2019754. doi:10.1080/02724634.2021.2019754. S2CID 247311332.
  139. Averianov AO, Lopatin AV (2022). "A re-appraisal of Parvicursor remotus from the Late Cretaceous of Mongolia: implications for the phylogeny and taxonomy of alvarezsaurid theropod dinosaurs". Journal of Systematic Palaeontology. 19 (16): 1097–1128. doi:10.1080/14772019.2021.2013965. S2CID 247222017.
  140. Meade LE, Ma W (2022). "Cranial muscle reconstructions quantify adaptation for high bite forces in Oviraptorosauria". Scientific Reports. 12 (1): Article number 3010. Bibcode:2022NatSR..12.3010M. doi:10.1038/s41598-022-06910-4. PMC 8863891. PMID 35194096.
  141. Yang, T.-Z.; Sander, P. M. (2022). "The reproductive biology of oviraptorosaurs: a synthetic view". In S-C. Chang; D. Zheng (eds.). Mesozoic Biological Events and Ecosystems in East Asia. The Geological Society of London. doi:10.1144/SP521-2021-181. {{cite book}}: |journal= ignored (help)
  142. Wei X, Kundrát M, Xu L, Ma W, Wu Y, Chang H, Zhang J, Zhou X (2022). "A new subadult specimen of oviraptorid Yulong mini (Theropoda: Oviraptorosauria) from the Upper Cretaceous Qiupa Formation of Luanchuan, central China". Cretaceous Research. 138: Article 105261. doi:10.1016/j.cretres.2022.105261. S2CID 248977151.
  143. Pei, R.; Xu, X. (2022). "New prospects on the cranial evolution of non-avialan paravian theropods based on geometric morphometrics" (PDF). In S-C. Chang; D. Zheng (eds.). Mesozoic Biological Events and Ecosystems in East Asia. The Geological Society of London. doi:10.1144/SP521-2021-179. S2CID 247095472. {{cite book}}: |journal= ignored (help)
  144. Brilhante NS, Constância de França T, Castro F, Sanches da Costa L, Currie PJ, Kugland de Azevedo SA, Delcourt R (2022). "A dromaeosaurid-like claw from the Upper Cretaceous of southern France". Historical Biology: An International Journal of Paleobiology: 1–10. doi:10.1080/08912963.2021.2007243. S2CID 247378741.
  145. Powers MJ, Fabbri M, Doschak MR, Bhullar BA, Evans DC, Norell MA, Currie PJ (2022). "A new hypothesis of eudromaeosaurian evolution: CT scans assist in testing and constructing morphological characters". Journal of Vertebrate Paleontology. 41 (5): e2010087. doi:10.1080/02724634.2021.2010087. S2CID 247039404.
  146. Noto CR, D'Amore DC, Drumheller SK, Adams TL (2022). "A newly recognized theropod assemblage from the Lewisville Formation (Woodbine Group; Cenomanian) and its implications for understanding Late Cretaceous Appalachian terrestrial ecosystems". PeerJ. 10: e12782. doi:10.7717/peerj.12782. PMC 8796713. PMID 35127286.
  147. ^ Worthy TH, Scofield RP, Salisbury SW, Hand SJ, De Pietri VL, Archer M (2022). "Two new neoavian taxa with contrasting palaeobiogeographical implications from the early Miocene St Bathans Fauna, New Zealand". Journal of Ornithology. 163 (3): 643–658. doi:10.1007/s10336-022-01981-6. S2CID 247993690.
  148. Mayr G, Lechner T, Böhme M (2022). "Nearly complete leg of an unusual, shelduck-sized anseriform bird from the earliest late Miocene hominid locality Hammerschmiede (Germany)". Historical Biology: An International Journal of Paleobiology (in press): 1–10. doi:10.1080/08912963.2022.2045285. S2CID 247310405.
  149. Matsuoka H, Hasegawa Y (2022). "Annakacygna, a new genus for two remarkable flightless swans(Aves, Anatidae, Cygnini)from the Miocene of Gunma, central Japan: With a note on the birds' food niche shift and specialization of wings for parental care action" (PDF). Bulletin of Gunma Museum of Natural History. 26: 1–30.
  150. Wang X, Ju S, Wu W, Liu Y, Guo Z, Ji Q (2022). "The first enantiornithine bird from the Lower Cretaceous Longjiang Formation in the Great Khingan Range of Inner Mongolia". Acta Geologica Sinica. 96 (2): 337–348. doi:10.19762/j.cnki.dizhixuebao.2022114.
  151. Degrange FJ (2022). "A new species of Dryornis (Aves, Cathartiformes) from the Santa Cruz Formation (lower Miocene), Patagonia, Argentina". Journal of Vertebrate Paleontology. 41 (5): e2008411. doi:10.1080/02724634.2021.2008411. S2CID 246833070.
  152. ^ Sánchez-Marco A (2022). "Two new Gypaetinae (Accipitridae, Aves) from the late Miocene of Spain". Historical Biology: An International Journal of Paleobiology (in press): 1–10. doi:10.1080/08912963.2022.2053117. S2CID 247605500.
  153. Li Z, Stidham TA, Zheng X, Wang Y, Zhao T, Deng T, Zhou Z (2022). "Early evolution of diurnal habits in owls (Aves, Strigiformes) documented by a new and exquisitely preserved Miocene owl fossil from China". Proceedings of the National Academy of Sciences of the United States of America. 119 (15): e2119217119. doi:10.1073/pnas.2119217119. PMC 9169863. PMID 35344399. S2CID 247776318.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  154. Tennyson AJ, Greer L, Lubbe P, Marx FG, Richards MD, Giovanardi S, Rawlence NJ (2022). "A New Species of Large Duck (Aves: Anatidae) from the Miocene of New Zealand". Taxonomy. 2 (1): 136–144. doi:10.3390/taxonomy2010011.
  155. Wang X, Cau A, Luo X, Kundrát M, Wu W, Ju S, Guo Z, Liu Y, Ji Q (2022). "A new bohaiornithid-like bird from the Lower Cretaceous of China fills a gap in enantiornithine disparity". Journal of Paleontology. 96 (4): 961–976. doi:10.1017/jpa.2022.12. S2CID 247432530.
  156. Kessler J, Horváth I (2022). "Presentation of so far undetermined bird remains from the Pliocene of Beremend 26 and Csarnóta 2 and 4 (Baranya county, South Hungary)". Ornis Hungarica. 30 (1): 47–68. doi:10.2478/orhu-2022-0004 (inactive 2022-06-23).{{cite journal}}: CS1 maint: DOI inactive as of June 2022 (link)
  157. Kuznetsov AN, Panyutina AA (2022). "Where was WAIR in avian flight evolution?". Biological Journal of the Linnean Society (in press). doi:10.1093/biolinnean/blac019.
  158. Marugán-Lobón J, Chiappe LM (2022). "Ontogenetic niche shifts in the Mesozoic bird Confuciusornis sanctus". Current Biology. 32 (7): 1629–1634.e2. doi:10.1016/j.cub.2022.02.010. PMID 35240049. S2CID 247198993.
  159. Wang S, Ma Y, Wu Q, Wang M, Hu D, Sullivan C, Xu X (2022). "Digital restoration of the pectoral girdles of two Early Cretaceous birds, and implications for early flight evolution". eLife. 11: e76086. doi:10.7554/eLife.76086. PMC 9023055. PMID 35356889.
  160. Miller CV, Pittman M, Wang X, Zheng X, Bright JA (2022). "Diet of Mesozoic toothed birds (Longipterygidae) inferred from quantitative analysis of extant avian diet proxies". BMC Biology. 20 (1): Article number 101. doi:10.1186/s12915-022-01294-3. PMC 9097364. PMID 35550084.
  161. Bell A, Chiappe LM (2022). "The Hesperornithiformes: A Review of the Diversity, Distribution, and Ecology of the Earliest Diving Birds". Diversity. 14 (4): Article 267. doi:10.3390/d14040267.
  162. Widrig K, Field DJ (2022). "The Evolution and Fossil Record of Palaeognathous Birds (Neornithes: Palaeognathae)". Diversity. 14 (2): Article 105. doi:10.3390/d14020105.
  163. Buffetaut E (2022). "The Enigmatic Avian Oogenus Psammornis: A Review of Stratigraphic Evidence". Diversity. 14 (2): Article 123. doi:10.3390/d14020123.
  164. Picasso, Mariana B.J.; Acosta Hospitaleche, Carolina; Mosto, María C. (2022). "An overview and update of South American and Antarctic fossil rheidae and putative ratitae (Aves, Palaeognathae)". Journal of South American Earth Sciences. 115: 103731. Bibcode:2022JSAES.11503731P. doi:10.1016/j.jsames.2022.103731. S2CID 246723279.
  165. Demarchi B, Stiller J, Grealy A, Mackie M, Deng Y, Gilbert T, Clarke J, Legendre LJ, Boano R, Sicheritz-Pontén T, Magee J, Zhang G, Bunce M, Collins MJ, Miller G (2022). "Ancient proteins resolve controversy over the identity of Genyornis eggshell". Proceedings of the National Academy of Sciences of the United States of America: e2109326119. doi:10.1073/pnas.2109326119. PMID 35609205. S2CID 249045755.
  166. Santiago De Mendoza R, Gómez RO (2022). "Ecomorphology of the tarsometatarsus of waterfowl (Anseriformes) based on geometric morphometrics and its application to fossils". The Anatomical Record (in press). doi:10.1002/ar.24891. PMID 35132811. S2CID 246651718.
  167. Nomenjanahary ZB, Hansford JP, Samonds KE, Ranivoharimanana L, Goodman SM (2022). "Sexual dimorphism and interpopulation size variation in the extinct Malagasy waterbird Alopochen sirabensis (Anseriformes: Anatidae)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 304 (2): 115–124. doi:10.1127/njgpa/2022/1059. S2CID 249027977.
  168. Suárez, William (2022). "Catalogue of Cuban fossil and subfossil birds". Bulletin of the British Ornithologists' Club. 142 (1). doi:10.25226/bboc.v142i1.2022.a3. S2CID 247385749.
  169. Gala M, Laroulandie V, Lenoble A (2022). "Evidence of a Late Holocene giant barn owl (Aves: Strigiformes: Tytonidae) in Guadeloupe". Journal of Caribbean Ornithology. 35: 40–46. doi:10.55431/jco.2022.35.40-46. S2CID 248872440.
  170. Boev, Zlatozar; Mikkola, Heimo (2022). "First Pleistocene Record of Great Grey Owl (Strix nebulosa Forster, 1772) in Bulgaria". Proceedings of the Bulgarian Academy of Sciences. 75 (5): 680–685. doi:10.7546/CRABS.2022.05.07.
  171. Aotsuka, Keiichi; Endo, Hideki (2022). "A Fossil Humerus of Pliocene Alcidae (Aves: Charadriiformes) from the Fukagawa Group in Hokkaido, Japan". Ornithological Science. 21 (1). doi:10.2326/osj.21.79. S2CID 246475596.
  172. De Pietri VL, Mayr G, Costeur L, Scofield RP (2022). "New records of buttonquails (Aves, Charadriiformes, Turnicidae) from the Oligocene and Miocene of Europe". Comptes Rendus Palevol. 21 (11): 235–244. doi:10.5852/cr-palevol2022v21a11. S2CID 247912905.
  173. Pelegrín, Jonathan S.; Acosta Hospitaleche, Carolina (2022). "Evolutionary and Biogeographical History of Penguins (Sphenisciformes): Review of the Dispersal Patterns and Adaptations in a Geologic and Paleoecological Context". Diversity. 14 (4): 255. doi:10.3390/d14040255.
  174. Aotsuka K, Isaji S, Endo H (2022). "An Avian Sternum (Aves: Procellariidae) from the Pleistocene Ichijiku Formation in Chiba, Japan". Paleontological Research. 26 (1): 74–86. doi:10.2517/PR200007. S2CID 245478620.
  175. Pavia M, Val A, Carrera L, Steininger CM (2022). "Fossil birds from Cooper's D aid in reconstructing the Early Pleistocene paleoenvironment in the Cradle of Humankind (Gauteng, South Africa)". Journal of Human Evolution. 167: Article 103185. doi:10.1016/j.jhevol.2022.103185. PMID 35489251. S2CID 248478028.
  176. Carrera L, Pavia M, Varela S (2022). "Birds adapted to cold conditions show greater changes in range size related to past climatic oscillations than temperate birds". Scientific Reports. 12 (1): Article number 10813. doi:10.1038/s41598-022-14972-7.
  177. Pole M (2022). "A vanished ecosystem: Sophora microphylla (Kōwhai) dominated forest recorded in mid-late Holocene rock shelters in Central Otago, New Zealand". Palaeontologia Electronica. 25 (1): Article number 25.1.1A. doi:10.26879/1169.
  178. Verry AJ, Mitchell KJ, Rawlence NJ (2022). "Genetic evidence for post-glacial expansion from a southern refugium in the eastern moa (Emeus crassus)". Biology Letters. 18 (5): Article ID 20220013. doi:10.1098/rsbl.2022.0013. PMC 9091836. PMID 35538842.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  179. Canoville A, Chinsamy A, Angst D (2022). "New Comparative Data on the Long Bone Microstructure of Large Extant and Extinct Flightless Birds". Diversity. 14 (4): Article 298. doi:10.3390/d14040298.
  180. Yang Z, Benton MJ, Hone DW, Xu X, McNamara ME, Jiang B (2022). "Allometric analysis sheds light on the systematics and ontogeny of anurognathid pterosaurs". Journal of Vertebrate Paleontology. 41 (5): e2028796. doi:10.1080/02724634.2021.2028796. S2CID 247262846.
  181. Jagielska, N.; O'Sullivan, M.; Funston, G. F.; Butler, I. B.; Challands, T. J.; Clark, N. D. L.; Fraser, N. C.; Penny, A.; Ross, D. A.; Wilkinson, M.; Brusatte, S. L. (2022). "A skeleton from the Middle Jurassic of Scotland illuminates an earlier origin of large pterosaurs". Current Biology. 32 (6): 1446–1453.e4. doi:10.1016/j.cub.2022.01.073. PMID 35196508. S2CID 247013664.
  182. "Anurognathid in Amber | extreme paleontology anurognathids, enantiornithines, birds and other flying archosaurs in amber". www.aakz.com. Retrieved 2022-06-26.
  183. ^ Martínez, Ricardo N.; Andres, Brian; Apaldetti, Cecilia; Cerda, Ignacio A. (March 2022). "The dawn of the flying reptiles: first Triassic record in the southern hemisphere". Papers in Palaeontology. 8 (2). doi:10.1002/spp2.1424. ISSN 2056-2799. S2CID 247494547.
  184. Ortiz David LD, González Riga BJ, Kellner AW (2022). "Thanatosdrakon amaru, gen. et sp. nov., a giant azhdarchid pterosaur from the upper Cretaceous of Argentina". Cretaceous Research. 137: Article 105228. doi:10.1016/j.cretres.2022.105228. S2CID 248140163.
  185. Sangster S (2022). "The osteology of Dimorphodon macronyx, a non-pterodactyloid pterosaur from the Lower Jurassic of Dorset, England". Monographs of the Palaeontographical Society. 175 (661): 1–48. doi:10.1080/02693445.2021.2037868.
  186. Dalla Vecchia FM (2022). "The presence of an orbitoantorbital fenestra: further evidence of the anurognathid peculiarity within the Pterosauria". Rivista Italiana di Paleontologia e Stratigrafia. 128 (1): 23–42. doi:10.54103/2039-4942/16973.
  187. Jiang S, Wang X, Zheng X, Cheng X, Wang X, Wei G, Kellner AW (2022). "Two emetolite-pterosaur associations from the Late Jurassic of China: showing the first evidence for antiperistalsis in pterosaurs". Philosophical Transactions of the Royal Society B: Biological Sciences. 377 (1847): Article ID 20210043. doi:10.1098/rstb.2021.0043. PMC 8819363. PMID 35125005. S2CID 246608508.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  188. Alarcón J, Codorniú L, Gonzalez E, Suárez ME, Suárez M, Vicencio-Campos O, Soto-Acuña S, Kaluza J, Vargas AO, Rubilar-Rogers D. "A new locality with ctenochasmatid pterosaurs (Pterosauria: Pterodactyloidea) in the Atacama desert, northern Chile". Cretaceous Research. 153: 105173. doi:10.1016/j.cretres.2022.105173.
  189. Gao DS, Jiang SX, Xu L, Cheng X, Yang LL, Jia SH, Wang XL (2022). "Reappraisal of the largest ctenochasmatid Moganopterus zhuiana Lü et al., 2012". Vertebrata PalAsiatica (in press): 1. doi:10.19615/j.cnki.2096-9899.220111.
  190. Pittman M, Kaye TG, Campos HB, Habib MB (2022). "Quadrupedal water launch capability demonstrated in small Late Jurassic pterosaurs". Scientific Reports. 12 (1): Article number 6540. doi:10.1038/s41598-022-10507-2. PMC 9023563. PMID 35449226.
  191. Averianov AO, Kurin AS (2022). "A new specimen of pteranodontid pterosaur Bogolubovia orientalis from the Upper Cretaceous of Penza Province, Russia". Historical Biology: An International Journal of Paleobiology: 1–9. doi:10.1080/08912963.2022.2087522. S2CID 249728681.
  192. Pentland AH, Poropat SF, White MA, Rigby SL, Bevitt JJ, Duncan RJ, Sloan T, Elliott RA, Elliott HA, Elliott JA, Elliott DA (2022). "The osteology of Ferrodraco lentoni, an anhanguerid pterosaur from the mid-Cretaceous of Australia". Journal of Vertebrate Paleontology. 41 (5): e2038182. doi:10.1080/02724634.2021.2038182. S2CID 247814094.
  193. Zhou CF, Niu T, Yu D (2022). "New data on the postcranial skeleton of the tapejarid Sinopterus from the Early Cretaceous Jehol Biota". Historical Biology: An International Journal of Paleobiology (in press): 1–8. doi:10.1080/08912963.2022.2042811. S2CID 247046176.
  194. Zhou CF, Yu D, Zhu Z, Andres B (2022). "A new wing skeleton of the Jehol tapejarid Sinopterus and its implications for ontogeny and paleoecology of the Tapejaridae". Scientific Reports. 12 (1): Article number 10159. doi:10.1038/s41598-022-14111-2. PMID 35715498.
  195. Cincotta A, Nicolaï M, Campos HB, McNamara M, D'Alba L, Shawkey MD, Kischlat EE, Yans J, Carleer R, Escuillié F, Godefroit P (2022). "Pterosaur melanosomes support signalling functions for early feathers". Nature. 604 (7907): 684–688. doi:10.1038/s41586-022-04622-3. PMC 9046085. PMID 35444275.
  196. Jung J, Huh M, Unwin DM, Smyth RS, Hwang KG, Kim HJ, Choi BD, Xing L (2022). "Evidence for a mixed-age group in a pterosaur footprint assemblage from the early Upper Cretaceous of Korea". Scientific Reports. 12 (1): Article number 10707. doi:10.1038/s41598-022-14966-5.
  197. Averianov AO, Ivantsov SV, Leshchinskiy SV, Skutschas PP (2022). "First pterosaur bone from the Lower Cretaceous of Siberia, Russia". Cretaceous Research. 137: Article 105230. doi:10.1016/j.cretres.2022.105230. S2CID 248136173.
  198. Averianov AO, Zverkov NG, Nikiforov AV (2022). "A New Finding of a Pterosaur in the Southern Urals". Doklady Earth Sciences. 503 (2): 185–188. doi:10.1134/S1028334X22040031. S2CID 248378329.
  199. ^ Kellner AW, Holgado B, Grillo O, Pretto FA, Kerber L, Pinheiro FL, Soares MB, Schultz CL, Lopes RT, Araújo O, Müller RT (2022). "Reassessment of Faxinalipterus minimus, a purported Triassic pterosaur from southern Brazil with the description of a new taxon". PeerJ. 10: e13276. doi:10.7717/peerj.13276. PMC 9074864. PMID 35529502.
  200. Müller RT (2022). "The closest evolutionary relatives of pterosaurs: what the morphospace occupation of different skeletal regions tell us about lagerpetids". The Anatomical Record (in press). doi:10.1002/ar.24904. PMID 35199946. S2CID 247081990.
  201. Müller RT, Garcia MS (2022). "Oldest dinosauromorph from South America and the early radiation of dinosaur precursors in Gondwana". Gondwana Research. 107: 42–48. Bibcode:2022GondR.107...42M. doi:10.1016/j.gr.2022.02.010. S2CID 247211845.
  202. Gatesy SM, Manafzadeh AR, Bishop PJ, Turner ML, Kambic RE, Cuff AR, Hutchinson JR (2022). "A proposed standard for quantifying 3-D hindlimb joint poses in living and extinct archosaurs". Journal of Anatomy. 241 (1): 101–118. doi:10.1111/joa.13635. PMID 35118654. S2CID 246529365.
  203. Cuff AR, Demuth OE, Michel K, Otero A, Pintore R, Polet DT, Wiseman AL, Hutchinson JR (2022). "Walking—and Running and Jumping—with Dinosaurs and Their Cousins, Viewed Through the Lens of Evolutionary Biomechanics". Integrative and Comparative Biology. doi:10.1093/icb/icac049. PMID 35595475.
  204. Wiemann J, Menéndez I, Crawford JM, Fabbri M, Gauthier JA, Hull PM, Norell MA, Briggs DE (2022). "Fossil biomolecules reveal an avian metabolism in the ancestral dinosaur". Nature. 606 (7914): 522–526. doi:10.1038/s41586-022-04770-6. PMID 35614213. S2CID 249064466.
  205. Langer MC, Godoy PL (2022). "So Volcanoes Created the Dinosaurs? A Quantitative Characterization of the Early Evolution of Terrestrial Pan-Aves". Frontiers in Earth Science. 10: Article 899562. doi:10.3389/feart.2022.899562.
  206. Goto Y, Yoda K, Weimerskirch H, Sato K (2022). "How did extinct giant birds and pterosaurs fly? A comprehensive modeling approach to evaluate soaring performance". PNAS Nexus. 1 (1): pgac023. doi:10.1093/pnasnexus/pgac023.
  207. Lockley MG, Helm CW, Lawfield AM, Sharmanb KJ (2022). "New evidence for avian and small non-avian theropod ichnotaxa from the Lower Cretaceous of Canada: implications for theropod ichnodiversity". Cretaceous Research: Article 105292. doi:10.1016/j.cretres.2022.105292.
  208. Cabrera-Hernández JS, Montellano-Ballesteros M, Roy PD, Fastovsky DE (2022). "Eggshells assemblages and stable isotope composition in the Upper Cretaceous (Campanian) El Gallo Formation of Baja California, Mexico: paleoenvironmental inferences". Cretaceous Research. 138: Article 105265. doi:10.1016/j.cretres.2022.105265. S2CID 249166930.
Categories: