Revision as of 13:09, 14 March 2019 editCitation bot (talk | contribs)Bots5,457,841 editsm Alter: pages, journal. Add: issue. Removed URL that duplicated unique identifier. Removed parameters. Formatted dashes. | You can use this bot yourself. Report bugs here. | User-activated.← Previous edit | Latest revision as of 11:46, 4 September 2024 edit undo150.204.19.208 (talk) slight nuance to relativity of speed of sound | ||
(36 intermediate revisions by 28 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Study of oscillations in stars}} | |||
] | ] | ||
'''Asteroseismology |
'''Asteroseismology''' is the study of oscillations in stars. Stars have many ] modes and frequencies, and the path of sound waves passing through a star depends on the local ], which in turn depends on local temperature and chemical composition. Because the resulting oscillation modes are sensitive to different parts of the star, they inform astronomers about the internal structure of the star, which is otherwise not directly possible from overall properties like brightness and surface temperature. | ||
Asteroseismology is closely related to ], the study of ] specifically in the ]. Though both are based on the same underlying physics, more and qualitatively different information is available for the Sun because its surface can be resolved. | |||
== Theoretical background == | == Theoretical background == | ||
] | ] | ||
By linearly perturbing the equations defining the mechanical equilibrium of a star (i.e. mass conservation and ]) and assuming that the perturbations are adiabatic, one can derive a system of four ] whose solutions give the frequency and structure of a star's modes of oscillation. The stellar structure is usually assumed to be spherically symmetric, so the horizontal (i.e. non-radial) component of the oscillations is described by ], indexed by an angular degree <math>\ell</math> and azimuthal order <math>m</math>. In non-rotating stars, modes with the same angular degree must all have the same frequency because there is no preferred axis. The angular degree indicates the number of nodal lines on the stellar surface, so for large values of <math>\ell</math>, the opposing sectors roughly cancel out, making it difficult to detect light variations. As a consequence, modes can only be detected up to an angular degree of about 3 in intensity and about 4 if observed in radial velocity. | By linearly perturbing the equations defining the mechanical equilibrium of a star (i.e. mass conservation and ]) and assuming that the perturbations are adiabatic, one can derive a system of four ] whose solutions give the frequency and structure of a star's modes of oscillation. The stellar structure is usually assumed to be spherically symmetric, so the horizontal (i.e. non-radial) component of the oscillations is described by ], indexed by an angular degree <math>\ell</math> and azimuthal order <math>m</math>. In non-rotating stars, modes with the same angular degree must all have the same frequency because there is no preferred axis. The angular degree indicates the number of nodal lines on the stellar surface, so for large values of <math>\ell</math>, the opposing sectors roughly cancel out, making it difficult to detect light variations. As a consequence, modes can only be detected up to an angular degree of about 3 in intensity and about 4 if observed in radial velocity. | ||
By additionally assuming that the perturbation to the gravitational potential is negligible (the ''Cowling'' approximation) and that the star's structure varies more slowly with radius than the oscillation mode, the equations can be reduced approximately to one second-order equation for the radial component of the displacement eigenfunction <math>\xi_r</math>, | By additionally assuming that the perturbation to the gravitational potential is negligible (the ''Cowling'' approximation) and that the star's structure varies more slowly with radius than the oscillation mode, the equations can be reduced approximately to one second-order equation for the radial component of the displacement eigenfunction <math>\xi_r</math>, | ||
<math display="block">\frac{d^2\xi_r}{dr^2} = \frac{\omega^2}{c_s^2} \left(1-\frac{N^2}{\omega^2}\right) | |||
\left(\frac{S_\ell^2}{\omega^2} - 1\right)\xi_r</math> | |||
\left(\frac{S_\ell^2}{\omega^2}-1\right)\xi_r</math> | |||
where | where | ||
<math>r</math> is the radial co-ordinate in the star, | <math>r</math> is the radial co-ordinate in the star, | ||
<math>\omega</math> is the angular frequency of the oscillation mode, | <math>\omega</math> is the angular frequency of the oscillation mode, | ||
<math>c_s</math> is the sound speed inside the star, | <math>c_s</math> is the sound speed inside the star, | ||
<math>N</math> is the |
<math>N</math> is the ] or buoyancy frequency and | ||
<math>S_\ell</math> is the Lamb frequency. | <math>S_\ell</math> is the Lamb frequency. | ||
The last two are defined by | The last two are defined by | ||
⚫ | <math display="block">N^2 = g \left(\frac{1}{\Gamma_1 P} \frac{dp}{dr} - \frac{1}{\rho} \frac{d\rho}{dr}\right)</math> | ||
⚫ | <math>N^2=g\left(\frac{1}{\ |
||
and | and | ||
⚫ | <math display="block">S_\ell^2 = \frac{\ell(\ell+1)c_s^2}{r^2}</math> | ||
⚫ | <math>S_\ell^2=\frac{\ell(\ell+1)c_s^2}{r^2}</math> | ||
respectively. By analogy with the behaviour of simple harmonic oscillators, | respectively. By analogy with the behaviour of simple harmonic oscillators, | ||
this implies that oscillating solutions exist when the frequency is either | this implies that oscillating solutions exist when the frequency is either | ||
Line 41: | Line 38: | ||
== Excitation mechanisms == | == Excitation mechanisms == | ||
=== |
=== Kappa-mechanism === | ||
{{main|Kappa |
{{main|Kappa-mechanism}} | ||
Under fairly specific conditions, some stars have regions where heat is transported by radiation and the opacity is a sharply decreasing function of temperature. This opacity ''bump'' can drive oscillations through the <math>\kappa</math>-mechanism (or ''Eddington valve''). Suppose that, at the beginning of an oscillation cycle, the stellar envelope has contracted. By expanding and cooling slightly, the layer in the opacity bump becomes more opaque, absorbs more radiation, and heats up. This heating causes expansion, further cooling and the layer becomes even more opaque. This continues until the material opacity stops increasing so rapidly, at which point the radiation trapped in the layer can escape. The star contracts and the cycle prepares to commence again. In this sense, the opacity acts like a valve that traps heat in the star's envelope. | Under fairly specific conditions, some stars have regions where heat is transported by radiation and the opacity is a sharply decreasing function of temperature. This opacity ''bump'' can drive oscillations through the <math>\kappa</math>-mechanism (or ''Eddington valve''). Suppose that, at the beginning of an oscillation cycle, the stellar envelope has contracted. By expanding and cooling slightly, the layer in the opacity bump becomes more opaque, absorbs more radiation, and heats up. This heating causes expansion, further cooling and the layer becomes even more opaque. This continues until the material opacity stops increasing so rapidly, at which point the radiation trapped in the layer can escape. The star contracts and the cycle prepares to commence again. In this sense, the opacity acts like a valve that traps heat in the star's envelope. | ||
Pulsations driven by the <math>\kappa</math>-mechanism are coherent and have relatively large amplitudes. It drives the pulsations in many of the longest-known variable stars, including the ] and ]. | Pulsations driven by the <math>\kappa</math>-mechanism are coherent and have relatively large amplitudes. It drives the pulsations in many of the longest-known variable stars, including the ] and ]s. | ||
=== Surface convection === | === Surface convection === | ||
In stars with surface convection zones, turbulent fluids motions near the surface simultaneously excite and damp oscillations across a broad range of frequency.<ref>{{Citation | last1 = Goldreich | first1 = Peter | |
In stars with surface convection zones, turbulent fluids motions near the surface simultaneously excite and damp oscillations across a broad range of frequency.<ref>{{Citation | last1 = Goldreich | first1 = Peter | author-link1 = Peter Goldreich | last2 = Keeley | first2 = Douglas A. | title = Solar seismology. II - The stochastic excitation of the solar p-modes by turbulent convection | date = February 1977 | journal = ] | volume = 212 | pages = 243–251 | bibcode = 1977ApJ...212..243G | doi=10.1086/155043 | doi-access = free }}</ref><ref>{{Citation | last1 = Christensen-Dalsgaard | first1 = Jørgen | author-link1 = Jørgen Christensen-Dalsgaard | last2 = Frandsen | first2 = Søren | title = Stellar 5 min oscillations | date = January 1983 | journal = ] | volume = 82 | issue = 1–2 | pages = 469–486 | bibcode = 1983SoPh...82..469C | doi = 10.1007/bf00145588 | s2cid = 125358311 }}</ref> | ||
Because the modes are intrinsically stable, they have low amplitudes and are relatively short-lived. This is the driving mechanism in all solar-like oscillators. | Because the modes are intrinsically stable, they have low amplitudes and are relatively short-lived. This is the driving mechanism in all solar-like oscillators. | ||
=== Convective blocking === | === Convective blocking === | ||
If the base of a surface convection zone is sharp and the convective timescales slower than the pulsation timescales, the convective flows react too slowly perturbations |
If the base of a surface convection zone is sharp and the convective timescales slower than the pulsation timescales, the convective flows react too slowly to perturbations that can build up into large, coherent pulsations. This mechanism is known as ''convective blocking''<ref>{{Citation | last1 = Pesnell | first1 = W. Dean | title = A new driving mechanism for stellar pulsations | date = March 1987 | journal = ] | volume = 314 | pages = 598–604 | bibcode = 1987ApJ...314..598P | doi = 10.1086/165089 }}</ref> | ||
and is believed to drive pulsations in the <math>\gamma</math> Doradus variables.<ref>{{Citation | last1 = Guzik | first1 = Joyce A. | last2 = Kaye | first2 = Anthony B. | last3 = Bradley | first3 = Paul A. | last4 = Cox | first4 = Arthur N. | last5 = Neuforge | first5 = Corinne | title = Driving the Gravity-Mode Pulsations in γ Doradus Variables | date = 10 October 2000 | journal = The Astrophysical Journal Letters | volume = 542 | issue = 1 | pages = L57–L60 | bibcode = 2000ApJ...542L..57G | doi=10.1086/312908 | doi-access=free }}</ref> | and is believed to drive pulsations in the <math>\gamma</math> Doradus variables.<ref>{{Citation | last1 = Guzik | first1 = Joyce A. | last2 = Kaye | first2 = Anthony B. | last3 = Bradley | first3 = Paul A. | last4 = Cox | first4 = Arthur N. | last5 = Neuforge | first5 = Corinne | title = Driving the Gravity-Mode Pulsations in γ Doradus Variables | date = 10 October 2000 | journal = The Astrophysical Journal Letters | volume = 542 | issue = 1 | pages = L57–L60 | bibcode = 2000ApJ...542L..57G | doi=10.1086/312908 | doi-access=free }}</ref> | ||
=== Tidal excitation === | === Tidal excitation === | ||
Observations from the ''Kepler'' satellite revealed eccentric binary systems in which oscillations are excited during the closest approach.<ref>{{Citation | last1 = Thompson | first1 = S. E. | last2 = Everett | first2 = M. | last3 = Mullally | first3 = F. | last4 = Barclay | first4 = T. and | title = A Class of Eccentric Binaries with Dynamic Tidal Distortions Discovered with Kepler | year = 2012 | journal = ] | volume = 753 | pages = 86| bibcode = 2012ApJ...753...86T | doi=10.1088/0004-637x/753/1/86|arxiv = 1203.6115 }}</ref> These systems are known as ''heartbeat'' stars because of the characteristic shape of the lightcurves. | Observations from the ''Kepler'' satellite revealed eccentric binary systems in which oscillations are excited during the closest approach.<ref>{{Citation | last1 = Thompson | first1 = S. E. | last2 = Everett | first2 = M. | last3 = Mullally | first3 = F. | last4 = Barclay | first4 = T. and | title = A Class of Eccentric Binaries with Dynamic Tidal Distortions Discovered with Kepler | year = 2012 | journal = ] | volume = 753 | issue = 1 | pages = 86| bibcode = 2012ApJ...753...86T | doi=10.1088/0004-637x/753/1/86|arxiv = 1203.6115 | s2cid = 119203028 }}</ref> These systems are known as ''heartbeat'' stars because of the characteristic shape of the lightcurves. | ||
== Types of oscillators == | == Types of oscillators == | ||
] | |||
=== Solar-like oscillators === | === Solar-like oscillators === | ||
Line 89: | Line 88: | ||
{{main|Delta Scuti variable|Gamma Doradus variable}} | {{main|Delta Scuti variable|Gamma Doradus variable}} | ||
Delta Scuti variables are found roughly where the classical instability strip intersects the main sequence. They are typically A- to early F-type dwarfs and subgiants and the oscillation modes are low-order radial and non-radial pressure modes, with periods ranging from 0.25 to 8 hours and magnitude variations anywhere between. Like Cepheid variables, the oscillations are driven by the kappa mechanism acting on the second ionization of helium. | Delta Scuti variables are found roughly where the classical instability strip intersects the main sequence. They are typically A- to early F-type dwarfs and subgiants and the oscillation modes are low-order radial and non-radial pressure modes, with periods ranging from 0.25 to 8 hours and magnitude variations anywhere between.{{clarify|date=March 2021|reason=values missing after "between" - ] has "0.003 to 0.9 ] in ]" but the source is unclear.}} Like Cepheid variables, the oscillations are driven by the kappa mechanism acting on the second ionization of helium. | ||
SX Phoenicis variables are regarded as metal-poor relatives of Delta Scuti variables. | SX Phoenicis variables are regarded as metal-poor relatives of Delta Scuti variables. | ||
Line 95: | Line 94: | ||
Gamma Doradus variables occur in similar stars to the red end of the Delta Scuti variables, usually of early F-type. The stars show multiple oscillation frequencies between about 0.5 and 3 days, which is much slower than the low-order pressure modes. Gamma Doradus oscillations are generally thought to be high-order gravity modes, excited by convective blocking. | Gamma Doradus variables occur in similar stars to the red end of the Delta Scuti variables, usually of early F-type. The stars show multiple oscillation frequencies between about 0.5 and 3 days, which is much slower than the low-order pressure modes. Gamma Doradus oscillations are generally thought to be high-order gravity modes, excited by convective blocking. | ||
Following results from ''Kepler'', it appears that |
Following results from ''Kepler'', it appears that many Delta Scuti stars also show Gamma Doradus oscillations and are therefore hybrids.<ref>{{Citation | last1 = Grigahc\'ene | first1 = A. | last2 = Antoci | first2 = V. | last3 = Balona | first3 = L. | last4 = Catanzaro | first4 = G. and | title = Hybrid $\gamma$ Doradus-$\delta$ Scuti Pulsators: New Insights into the Physics of the Oscillations from Kepler Observations | year = 2010 | journal = The Astrophysical Journal Letters | volume = 713 | issue = 2 | pages = L192–L197| bibcode = 2010ApJ...713L.192G|arxiv = 1001.0747 |doi = 10.1088/2041-8205/713/2/L192 | s2cid = 56144432 }}</ref><ref>{{Citation | last1 = Balona | first1 = L. A. | title = Low frequencies in Kepler $\delta$ Scuti stars | year = 2014 | journal = ] | volume = 437 | issue = 2 | pages = 1476–1484| bibcode = 2014MNRAS.437.1476B | doi=10.1093/mnras/stt1981| doi-access = free }}</ref> | ||
=== Rapidly oscillating Ap (roAp) stars === | === Rapidly oscillating Ap (roAp) stars === | ||
Line 101: | Line 100: | ||
{{main|Rapidly oscillating Ap star}} | {{main|Rapidly oscillating Ap star}} | ||
Rapidly oscillating Ap stars have similar parameters to Delta Scuti variables, mostly being A- and F-type, but they are also strongly magnetic and chemically peculiar (hence the ''p'' spectral subtype). Their dense mode spectra are understood in terms of the ''oblique pulsator model'': the |
Rapidly oscillating Ap stars have similar parameters to Delta Scuti variables, mostly being A- and F-type, but they are also strongly magnetic and chemically peculiar (hence the ''p'' spectral subtype). Their dense mode spectra are understood in terms of the ''oblique pulsator model'': the mode's frequencies are modulated by the magnetic field, which is not necessarily aligned with the star's rotation (as is the case in the Earth). The oscillation modes have frequencies around 1500 μHz and amplitudes of a few mmag. | ||
=== Slowly |
=== Slowly pulsating B stars and Beta Cephei variables === | ||
{{main|Slowly pulsating B-type star|Beta Cephei variable}} | {{main|Slowly pulsating B-type star|Beta Cephei variable}} | ||
Slowly |
Slowly pulsating B (SPB) stars are B-type stars with oscillation periods of a few days, understood to be high-order gravity modes excited by the kappa mechanism. Beta Cephei variables are slightly hotter (and thus more massive), also have modes excited by the kappa mechanism and additionally oscillate in low-order gravity modes with periods of several hours. Both classes of oscillators contain only slowly rotating stars. | ||
=== Variable subdwarf B stars === | === Variable subdwarf B stars === | ||
Line 113: | Line 112: | ||
{{main|Subdwarf B star}} | {{main|Subdwarf B star}} | ||
Subdwarf B (sdB) stars are in essence the cores of core-helium burning giants who have somehow lost most of their hydrogen envelopes, to the extent that there is no hydrogen |
Subdwarf B (sdB) stars are in essence the cores of core-helium burning giants who have somehow lost most of their hydrogen envelopes, to the extent that there is no hydrogen-burning shell. They have multiple oscillation periods that range between about 1 and 10 minutes and amplitudes anywhere between 0.001 and 0.3 mag in visible light. The oscillations are low-order pressure modes, excited by the kappa mechanism acting on the iron opacity bump. | ||
=== White dwarfs === | === White dwarfs === | ||
Line 119: | Line 118: | ||
{{main|Pulsating white dwarf}} | {{main|Pulsating white dwarf}} | ||
White dwarfs are characterized by spectral type, much like ordinary stars, except that the relationship between spectral type and effective temperature does not correspond in the same way. Thus, white dwarfs are known by types DO, DA and DB. Cooler types are physically possible but the Universe is too young for them to have cooled enough. White dwarfs of all three types are found to pulsate. The pulsators are known as GW Virginis stars (DO variables, sometimes also known as PG 1159 stars), V777 Herculis stars (DB variables) and ZZ Ceti stars (DA variables). All pulsate in low-degree, high-order g-modes. The oscillation periods broadly decrease with effective temperature, ranging from about 30 min down to about 1 minute. GW Virginis and ZZ Ceti stars are thought to be |
White dwarfs are characterized by spectral type, much like ordinary stars, except that the relationship between spectral type and effective temperature does not correspond in the same way. Thus, white dwarfs are known by types DO, DA and DB. Cooler types are physically possible but the Universe is too young for them to have cooled enough. White dwarfs of all three types are found to pulsate. The pulsators are known as GW Virginis stars (DO variables, sometimes also known as PG 1159 stars), V777 Herculis stars (DB variables) and ZZ Ceti stars (DA variables). All pulsate in low-degree, high-order g-modes. The oscillation periods broadly decrease with effective temperature, ranging from about 30 min down to about 1 minute. GW Virginis and ZZ Ceti stars are thought to be excited by the kappa mechanism; V777 Herculis stars by convective blocking. | ||
==Space missions== | ==Space missions== | ||
A number of past, present and future spacecraft have asteroseismology studies as a significant part of their missions (order chronological). |
A number of past, present and future spacecraft have asteroseismology studies as a significant part of their missions (order chronological). | ||
*] – A ] satellite launched in 1999. A failed large infrared telescope, the two-inch aperture star tracker was used for more than a decade as a bright-star asteroseismology instrument. Re-entered Earth's atmosphere 2011. | *] – A ] satellite launched in 1999. A failed large infrared telescope, the two-inch aperture star tracker was used for more than a decade as a bright-star asteroseismology instrument. Re-entered Earth's atmosphere 2011. | ||
*] – A ] satellite launched in 2003. The first spacecraft dedicated to asteroseismology. | *] – A ] satellite launched in 2003. The first spacecraft dedicated to asteroseismology. | ||
*] – A ] led ] planet-finder and asteroseismology satellite launched in 2006. | *] – A ] led ] planet-finder and asteroseismology satellite launched in 2006. | ||
*] – A ] planet-finder spacecraft launched in 2009, repurposed as ''K2'' since the failure of a second reaction wheel prevented the telescope from continuing to monitor the same field. | *] – A ] planet-finder spacecraft launched in 2009, repurposed as ''K2'' since the failure of a second reaction wheel prevented the telescope from continuing to monitor the same field. | ||
*] – A constellation of nanosatellites used to study the brightest oscillating stars. |
*] – A constellation of nanosatellites used to study the brightest oscillating stars. First two satellites launched Feb 25, 2013. | ||
*] – |
*] – A ] planet-finder that will survey bright stars across most of the sky launched in 2018. | ||
*] – A planned ] mission that will specifically exploit asteroseismology to obtain accurate masses and radii of transiting planets. | *] – A planned ] mission that will specifically exploit asteroseismology to obtain accurate masses and radii of transiting planets. | ||
==See also== | |||
*] | |||
*] | |||
*]–The study of oscillation modes in accretion disks | |||
*{{Annotated link|Seismology}} | |||
*{{Annotated link|Whole Earth Telescope}} | |||
== References == | == References == | ||
{{ |
{{Reflist|30em}} | ||
== Further reading == | == Further reading == | ||
Line 146: | Line 152: | ||
| publisher = Springer | | publisher = Springer | ||
| series = Astronomy and Astrophysics Library | | series = Astronomy and Astrophysics Library | ||
| volume = | |||
| edition = | |||
| date = 2010 | | date = 2010 | ||
| location = Dordrecht, New York | | location = Dordrecht, New York | ||
| pages = | |||
| url = | doi = | id = | |||
| isbn = 978-1-4020-5803-5 | | isbn = 978-1-4020-5803-5 | ||
}} | |||
| mr = | zbl = | jfm = }} | |||
*{{cite web | *{{cite web | ||
| last = Christensen-Dalsgaard | first = Jørgen | | last = Christensen-Dalsgaard | first = Jørgen | ||
| authorlink = | |||
| title = Lecture notes on stellar oscillations | | title = Lecture notes on stellar oscillations | ||
| website = | |||
| date = | |||
| url = http://astro.phys.au.dk/~jcd/oscilnotes/ | | url = http://astro.phys.au.dk/~jcd/oscilnotes/ | ||
⚫ | | access-date = 5 June 2015 | ||
| format = | |||
}} | |||
| doi = | |||
⚫ | | |
||
| archiveurl = | |||
| archivedate = }} | |||
*{{cite book | *{{cite book | ||
| last1 = Pijpers | first1 = Frank P. | | last1 = Pijpers | first1 = Frank P. | ||
Line 172: | Line 168: | ||
| date = 2006 | | date = 2006 | ||
| location = London | | location = London | ||
| pages = | |||
| url = | doi = | id = | |||
| isbn = 978-1-8609-4755-1 | | isbn = 978-1-8609-4755-1 | ||
}} | |||
| mr = | zbl = | jfm = }} | |||
== Software == | |||
The '''' package (in R language) provides the main functions to analyzed patterns on the oscillation modes of variable stars. An with synthetic data is also provided. | |||
{{Star}} | {{Star}} | ||
{{Authority control}} | |||
] | ] |
Latest revision as of 11:46, 4 September 2024
Study of oscillations in starsAsteroseismology is the study of oscillations in stars. Stars have many resonant modes and frequencies, and the path of sound waves passing through a star depends on the local speed of sound, which in turn depends on local temperature and chemical composition. Because the resulting oscillation modes are sensitive to different parts of the star, they inform astronomers about the internal structure of the star, which is otherwise not directly possible from overall properties like brightness and surface temperature.
Asteroseismology is closely related to helioseismology, the study of stellar pulsation specifically in the Sun. Though both are based on the same underlying physics, more and qualitatively different information is available for the Sun because its surface can be resolved.
Theoretical background
By linearly perturbing the equations defining the mechanical equilibrium of a star (i.e. mass conservation and hydrostatic equilibrium) and assuming that the perturbations are adiabatic, one can derive a system of four differential equations whose solutions give the frequency and structure of a star's modes of oscillation. The stellar structure is usually assumed to be spherically symmetric, so the horizontal (i.e. non-radial) component of the oscillations is described by spherical harmonics, indexed by an angular degree and azimuthal order . In non-rotating stars, modes with the same angular degree must all have the same frequency because there is no preferred axis. The angular degree indicates the number of nodal lines on the stellar surface, so for large values of , the opposing sectors roughly cancel out, making it difficult to detect light variations. As a consequence, modes can only be detected up to an angular degree of about 3 in intensity and about 4 if observed in radial velocity.
By additionally assuming that the perturbation to the gravitational potential is negligible (the Cowling approximation) and that the star's structure varies more slowly with radius than the oscillation mode, the equations can be reduced approximately to one second-order equation for the radial component of the displacement eigenfunction , where is the radial co-ordinate in the star, is the angular frequency of the oscillation mode, is the sound speed inside the star, is the Brunt–Väisälä or buoyancy frequency and is the Lamb frequency. The last two are defined by and respectively. By analogy with the behaviour of simple harmonic oscillators, this implies that oscillating solutions exist when the frequency is either greater or less than both and . We identify the former case as high-frequency pressure modes (p-modes) and the latter as low-frequency gravity modes (g-modes).
This basic separation allows us to determine (to reasonable accuracy) where we expect what kind of mode to resonate in a star. By plotting the curves and (for given ), we expect p-modes to resonate at frequencies below both curves or frequencies above both curves.
Excitation mechanisms
Kappa-mechanism
Main article: Kappa-mechanismUnder fairly specific conditions, some stars have regions where heat is transported by radiation and the opacity is a sharply decreasing function of temperature. This opacity bump can drive oscillations through the -mechanism (or Eddington valve). Suppose that, at the beginning of an oscillation cycle, the stellar envelope has contracted. By expanding and cooling slightly, the layer in the opacity bump becomes more opaque, absorbs more radiation, and heats up. This heating causes expansion, further cooling and the layer becomes even more opaque. This continues until the material opacity stops increasing so rapidly, at which point the radiation trapped in the layer can escape. The star contracts and the cycle prepares to commence again. In this sense, the opacity acts like a valve that traps heat in the star's envelope.
Pulsations driven by the -mechanism are coherent and have relatively large amplitudes. It drives the pulsations in many of the longest-known variable stars, including the Cepheid and RR Lyrae variables.
Surface convection
In stars with surface convection zones, turbulent fluids motions near the surface simultaneously excite and damp oscillations across a broad range of frequency. Because the modes are intrinsically stable, they have low amplitudes and are relatively short-lived. This is the driving mechanism in all solar-like oscillators.
Convective blocking
If the base of a surface convection zone is sharp and the convective timescales slower than the pulsation timescales, the convective flows react too slowly to perturbations that can build up into large, coherent pulsations. This mechanism is known as convective blocking and is believed to drive pulsations in the Doradus variables.
Tidal excitation
Observations from the Kepler satellite revealed eccentric binary systems in which oscillations are excited during the closest approach. These systems are known as heartbeat stars because of the characteristic shape of the lightcurves.
Types of oscillators
Solar-like oscillators
Main article: Solar-like oscillationsBecause solar oscillations are driven by near-surface convection, any stellar oscillations caused similarly are known as solar-like oscillations and the stars themselves as solar-like oscillators. However, solar-like oscillations also occur in evolved stars (subgiants and red giants), which have convective envelopes, even though the stars are not Sun-like.
Cepheid variables
Main article: Cepheid variableCepheid variables are one of the most important classes of pulsating star. They are core-helium burning stars with masses above about 5 solar masses. They principally oscillate at their fundamental modes, with typical periods ranging from days to months. Their pulsation periods are closely related to their luminosities, so it is possible to determine the distance to a Cepheid by measuring its oscillation period, computing its luminosity, and comparing this to its observed brightness.
Cepheid pulsations are excited by the kappa mechanism acting on the second ionization zone of helium.
RR Lyrae variables
Main article: RR Lyrae variableRR Lyraes are similar to Cepheid variables but of lower metallicity (i.e. Population II) and much lower masses (about 0.6 to 0.8 time solar). They are core helium-burning giants that oscillate in one or both of their fundamental mode or first overtone. The oscillation are also driven by the kappa mechanism acting through the second ionization of helium. Many RR Lyraes, including RR Lyrae itself, show long period amplitude modulations, known as the Blazhko effect.
Delta Scuti and Gamma Doradus stars
Main articles: Delta Scuti variable and Gamma Doradus variableDelta Scuti variables are found roughly where the classical instability strip intersects the main sequence. They are typically A- to early F-type dwarfs and subgiants and the oscillation modes are low-order radial and non-radial pressure modes, with periods ranging from 0.25 to 8 hours and magnitude variations anywhere between. Like Cepheid variables, the oscillations are driven by the kappa mechanism acting on the second ionization of helium.
SX Phoenicis variables are regarded as metal-poor relatives of Delta Scuti variables.
Gamma Doradus variables occur in similar stars to the red end of the Delta Scuti variables, usually of early F-type. The stars show multiple oscillation frequencies between about 0.5 and 3 days, which is much slower than the low-order pressure modes. Gamma Doradus oscillations are generally thought to be high-order gravity modes, excited by convective blocking.
Following results from Kepler, it appears that many Delta Scuti stars also show Gamma Doradus oscillations and are therefore hybrids.
Rapidly oscillating Ap (roAp) stars
Main article: Rapidly oscillating Ap starRapidly oscillating Ap stars have similar parameters to Delta Scuti variables, mostly being A- and F-type, but they are also strongly magnetic and chemically peculiar (hence the p spectral subtype). Their dense mode spectra are understood in terms of the oblique pulsator model: the mode's frequencies are modulated by the magnetic field, which is not necessarily aligned with the star's rotation (as is the case in the Earth). The oscillation modes have frequencies around 1500 μHz and amplitudes of a few mmag.
Slowly pulsating B stars and Beta Cephei variables
Main articles: Slowly pulsating B-type star and Beta Cephei variableSlowly pulsating B (SPB) stars are B-type stars with oscillation periods of a few days, understood to be high-order gravity modes excited by the kappa mechanism. Beta Cephei variables are slightly hotter (and thus more massive), also have modes excited by the kappa mechanism and additionally oscillate in low-order gravity modes with periods of several hours. Both classes of oscillators contain only slowly rotating stars.
Variable subdwarf B stars
Main article: Subdwarf B starSubdwarf B (sdB) stars are in essence the cores of core-helium burning giants who have somehow lost most of their hydrogen envelopes, to the extent that there is no hydrogen-burning shell. They have multiple oscillation periods that range between about 1 and 10 minutes and amplitudes anywhere between 0.001 and 0.3 mag in visible light. The oscillations are low-order pressure modes, excited by the kappa mechanism acting on the iron opacity bump.
White dwarfs
Main article: Pulsating white dwarfWhite dwarfs are characterized by spectral type, much like ordinary stars, except that the relationship between spectral type and effective temperature does not correspond in the same way. Thus, white dwarfs are known by types DO, DA and DB. Cooler types are physically possible but the Universe is too young for them to have cooled enough. White dwarfs of all three types are found to pulsate. The pulsators are known as GW Virginis stars (DO variables, sometimes also known as PG 1159 stars), V777 Herculis stars (DB variables) and ZZ Ceti stars (DA variables). All pulsate in low-degree, high-order g-modes. The oscillation periods broadly decrease with effective temperature, ranging from about 30 min down to about 1 minute. GW Virginis and ZZ Ceti stars are thought to be excited by the kappa mechanism; V777 Herculis stars by convective blocking.
Space missions
A number of past, present and future spacecraft have asteroseismology studies as a significant part of their missions (order chronological).
- WIRE – A NASA satellite launched in 1999. A failed large infrared telescope, the two-inch aperture star tracker was used for more than a decade as a bright-star asteroseismology instrument. Re-entered Earth's atmosphere 2011.
- MOST – A Canadian satellite launched in 2003. The first spacecraft dedicated to asteroseismology.
- CoRoT – A French led ESA planet-finder and asteroseismology satellite launched in 2006.
- Kepler space telescope – A NASA planet-finder spacecraft launched in 2009, repurposed as K2 since the failure of a second reaction wheel prevented the telescope from continuing to monitor the same field.
- BRITE – A constellation of nanosatellites used to study the brightest oscillating stars. First two satellites launched Feb 25, 2013.
- TESS – A NASA planet-finder that will survey bright stars across most of the sky launched in 2018.
- PLATO – A planned ESA mission that will specifically exploit asteroseismology to obtain accurate masses and radii of transiting planets.
See also
- Frequency separation
- Starquake
- Diskoseismology–The study of oscillation modes in accretion disks
- Seismology – Scientific study of earthquakes and propagation of elastic waves through a planet
- Whole Earth Telescope – International collaboration to observe variable stars
References
- Christensen-Dalsgaard, J.; Dappen, W.; Ajukov, S. V. and (1996), "The Current State of Solar Modeling", Science, 272 (5266): 1286–1292, Bibcode:1996Sci...272.1286C, doi:10.1126/science.272.5266.1286, PMID 8662456, S2CID 35469049
- Goldreich, Peter; Keeley, Douglas A. (February 1977), "Solar seismology. II - The stochastic excitation of the solar p-modes by turbulent convection", The Astrophysical Journal, 212: 243–251, Bibcode:1977ApJ...212..243G, doi:10.1086/155043
- Christensen-Dalsgaard, Jørgen; Frandsen, Søren (January 1983), "Stellar 5 min oscillations", Solar Physics, 82 (1–2): 469–486, Bibcode:1983SoPh...82..469C, doi:10.1007/bf00145588, S2CID 125358311
- Pesnell, W. Dean (March 1987), "A new driving mechanism for stellar pulsations", The Astrophysical Journal, 314: 598–604, Bibcode:1987ApJ...314..598P, doi:10.1086/165089
- Guzik, Joyce A.; Kaye, Anthony B.; Bradley, Paul A.; Cox, Arthur N.; Neuforge, Corinne (10 October 2000), "Driving the Gravity-Mode Pulsations in γ Doradus Variables", The Astrophysical Journal Letters, 542 (1): L57 – L60, Bibcode:2000ApJ...542L..57G, doi:10.1086/312908
- Thompson, S. E.; Everett, M.; Mullally, F.; Barclay, T. and (2012), "A Class of Eccentric Binaries with Dynamic Tidal Distortions Discovered with Kepler", The Astrophysical Journal, 753 (1): 86, arXiv:1203.6115, Bibcode:2012ApJ...753...86T, doi:10.1088/0004-637x/753/1/86, S2CID 119203028
- Grigahc\'ene, A.; Antoci, V.; Balona, L.; Catanzaro, G. and (2010), "Hybrid $\gamma$ Doradus-$\delta$ Scuti Pulsators: New Insights into the Physics of the Oscillations from Kepler Observations", The Astrophysical Journal Letters, 713 (2): L192 – L197, arXiv:1001.0747, Bibcode:2010ApJ...713L.192G, doi:10.1088/2041-8205/713/2/L192, S2CID 56144432
- Balona, L. A. (2014), "Low frequencies in Kepler $\delta$ Scuti stars", Monthly Notices of the Royal Astronomical Society, 437 (2): 1476–1484, Bibcode:2014MNRAS.437.1476B, doi:10.1093/mnras/stt1981
Further reading
- Aerts, Conny; Christensen-Dalsgaard, Jørgen; Kurtz, Donald (2010). Asteroseismology. Astronomy and Astrophysics Library. Dordrecht, New York: Springer. ISBN 978-1-4020-5803-5.
- Christensen-Dalsgaard, Jørgen. "Lecture notes on stellar oscillations". Retrieved 5 June 2015.
- Pijpers, Frank P. (2006). Methods in Helio- and Asteroseismology. London: Imperial College Press. ISBN 978-1-8609-4755-1.
Software
The Variable Star package (in R language) provides the main functions to analyzed patterns on the oscillation modes of variable stars. An UI for experimentation with synthetic data is also provided.
Stars | |||||||
---|---|---|---|---|---|---|---|
Formation | |||||||
Evolution | |||||||
Classification |
| ||||||
Nucleosynthesis | |||||||
Structure | |||||||
Properties | |||||||
Star systems | |||||||
Earth-centric observations | |||||||
Lists | |||||||
Related | |||||||